These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 15013087)
1. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. Li G; Zayontz S; Most E; DeFrate LE; Suggs JF; Rubash HE J Orthop Res; 2004 Mar; 22(2):293-7. PubMed ID: 15013087 [TBL] [Abstract][Full Text] [Related]
2. In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study. Höher J; Vogrin TM; Woo SL; Carlin GJ; Arøen A; Harner CD J Orthop Res; 1999 Sep; 17(5):763-8. PubMed ID: 10569489 [TBL] [Abstract][Full Text] [Related]
3. Effects of applied quadriceps and hamstrings muscle loads on forces in the anterior and posterior cruciate ligaments. Markolf KL; O'Neill G; Jackson SR; McAllister DR Am J Sports Med; 2004; 32(5):1144-9. PubMed ID: 15262635 [TBL] [Abstract][Full Text] [Related]
4. Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Griffith CJ; Wijdicks CA; LaPrade RF; Armitage BM; Johansen S; Engebretsen L Am J Sports Med; 2009 Jan; 37(1):140-8. PubMed ID: 18725650 [TBL] [Abstract][Full Text] [Related]
5. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. Gabriel MT; Wong EK; Woo SL; Yagi M; Debski RE J Orthop Res; 2004 Jan; 22(1):85-9. PubMed ID: 14656664 [TBL] [Abstract][Full Text] [Related]
6. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads--an in vitro experimental study. Li G; Gill TJ; DeFrate LE; Zayontz S; Glatt V; Zarins B J Orthop Res; 2002 Jul; 20(4):887-92. PubMed ID: 12168683 [TBL] [Abstract][Full Text] [Related]
7. In situ forces in the anterior cruciate ligament and its bundles in response to anterior tibial loads. Sakane M; Fox RJ; Woo SL; Livesay GA; Li G; Fu FH J Orthop Res; 1997 Mar; 15(2):285-93. PubMed ID: 9167633 [TBL] [Abstract][Full Text] [Related]
8. The effect of tibiofemoral joint kinematics on patellofemoral contact pressures under simulated muscle loads. Li G; DeFrate LE; Zayontz S; Park SE; Gill TJ J Orthop Res; 2004 Jul; 22(4):801-6. PubMed ID: 15183437 [TBL] [Abstract][Full Text] [Related]
9. Kinematics of the knee at high flexion angles: an in vitro investigation. Li G; Zayontz S; DeFrate LE; Most E; Suggs JF; Rubash HE J Orthop Res; 2004 Jan; 22(1):90-5. PubMed ID: 14656665 [TBL] [Abstract][Full Text] [Related]
10. Effects of knee flexion angles for graft fixation on force distribution in double-bundle anterior cruciate ligament grafts. Miura K; Woo SL; Brinkley R; Fu YC; Noorani S Am J Sports Med; 2006 Apr; 34(4):577-85. PubMed ID: 16282574 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous measurement of changes in length of the cruciate ligaments during knee motion. Kurosawa H; Yamakoshi K; Yasuda K; Sasaki T Clin Orthop Relat Res; 1991 Apr; (265):233-40. PubMed ID: 2009664 [TBL] [Abstract][Full Text] [Related]
12. Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion. MacWilliams BA; Wilson DR; DesJardins JD; Romero J; Chao EY J Orthop Res; 1999 Nov; 17(6):817-22. PubMed ID: 10632447 [TBL] [Abstract][Full Text] [Related]
13. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA Am J Sports Med; 2006 Feb; 34(2):269-74. PubMed ID: 16260464 [TBL] [Abstract][Full Text] [Related]
14. Cruciate ligament force during the wall squat and the one-leg squat. Escamilla RF; Zheng N; Imamura R; Macleod TD; Edwards WB; Hreljac A; Fleisig GS; Wilk KE; Moorman CT; Andrews JR Med Sci Sports Exerc; 2009 Feb; 41(2):408-17. PubMed ID: 19127183 [TBL] [Abstract][Full Text] [Related]
15. Effect of the posterior cruciate ligament on posterior stability of the knee in high flexion. Li G; Most E; DeFrate LE; Suggs JF; Gill TJ; Rubash HE J Biomech; 2004 May; 37(5):779-83. PubMed ID: 15047008 [TBL] [Abstract][Full Text] [Related]
16. Dependence of cruciate-ligament loading on muscle forces and external load. Pandy MG; Shelburne KB J Biomech; 1997 Oct; 30(10):1015-24. PubMed ID: 9391868 [TBL] [Abstract][Full Text] [Related]
17. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. Li G; Rudy TW; Sakane M; Kanamori A; Ma CB; Woo SL J Biomech; 1999 Apr; 32(4):395-400. PubMed ID: 10213029 [TBL] [Abstract][Full Text] [Related]
18. Cruciate coupling and screw-home mechanism in passive knee joint during extension--flexion. Moglo KE; Shirazi-Adl A J Biomech; 2005 May; 38(5):1075-83. PubMed ID: 15797589 [TBL] [Abstract][Full Text] [Related]
19. Biomechanics of the human triple-bundle anterior cruciate ligament. Kato Y; Ingham SJ; Maeyama A; Lertwanich P; Wang JH; Mifune Y; Kramer S; Smolinski P; Fu FH Arthroscopy; 2012 Feb; 28(2):247-54. PubMed ID: 22019233 [TBL] [Abstract][Full Text] [Related]
20. A quantitative analysis of valgus torque on the ACL: a human cadaveric study. Fukuda Y; Woo SL; Loh JC; Tsuda E; Tang P; McMahon PJ; Debski RE J Orthop Res; 2003 Nov; 21(6):1107-12. PubMed ID: 14554225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]