BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15013519)

  • 1. From Ras signalling to ChoK inhibitors: a further advance in anticancer drug design.
    Ramírez de Molina A; Rodríguez-González A; Lacal JC
    Cancer Lett; 2004 Apr; 206(2):137-48. PubMed ID: 15013519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choline kinase inhibitors as a novel approach for antiproliferative drug design.
    Hernández-Alcoceba R; Saniger L; Campos J; Núñez MC; Khaless F; Gallo MA; Espinosa A; Lacal JC
    Oncogene; 1997 Nov; 15(19):2289-301. PubMed ID: 9393874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of ChoK is an efficient antitumor strategy for Harvey-, Kirsten-, and N-ras-transformed cells.
    Ramírez de Molina A; Rodríguez-González A; Penalva V; Lucas L; Lacal JC
    Biochem Biophys Res Commun; 2001 Jul; 285(4):873-9. PubMed ID: 11467831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ras signal transduction in carcinogenesis and progression of bladder cancer: molecular target for treatment?
    Shinohara N; Koyanagi T
    Urol Res; 2002 Oct; 30(5):273-81. PubMed ID: 12389114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Choline kinase activation is a critical requirement for the proliferation of primary human mammary epithelial cells and breast tumor progression.
    Ramírez de Molina A; Báñez-Coronel M; Gutiérrez R; Rodríguez-González A; Olmeda D; Megías D; Lacal JC
    Cancer Res; 2004 Sep; 64(18):6732-9. PubMed ID: 15374991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of choline kinase as a specific cytotoxic strategy in oncogene-transformed cells.
    Rodríguez-González A; Ramírez de Molina A; Fernández F; Ramos MA; del Carmen Núñez M; Campos J; Lacal JC
    Oncogene; 2003 Dec; 22(55):8803-12. PubMed ID: 14654777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring Ras-pathway--inhibitor combinations for cancer therapy.
    Blum R; Kloog Y
    Drug Resist Updat; 2005 Dec; 8(6):369-80. PubMed ID: 16356760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choline kinase: an important target for cancer.
    Janardhan S; Srivani P; Sastry GN
    Curr Med Chem; 2006; 13(10):1169-86. PubMed ID: 16719778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ras signaling and therapies.
    Young A; Lyons J; Miller AL; Phan VT; Alarcón IR; McCormick F
    Adv Cancer Res; 2009; 102():1-17. PubMed ID: 19595305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipase D and choline kinase: their role in cancer development and their potential as drug targets.
    Rodríguez-González A; Ramírez de Molina A; Benítez-Rajal J; Lacal JC
    Prog Cell Cycle Res; 2003; 5():191-201. PubMed ID: 14593713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors.
    Faivre S; Djelloul S; Raymond E
    Semin Oncol; 2006 Aug; 33(4):407-20. PubMed ID: 16890796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The development of protein farnesyltransferase inhibitors as signaling-based anticancer agents.
    Ohkanda J; Blaskovich MA; Sebti SM; Hamilton AD
    Prog Cell Cycle Res; 2003; 5():211-7. PubMed ID: 14593715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choline kinase as a link connecting phospholipid metabolism and cell cycle regulation: implications in cancer therapy.
    Ramírez de Molina A; Gallego-Ortega D; Sarmentero-Estrada J; Lagares D; Gómez Del Pulgar T; Bandrés E; García-Foncillas J; Lacal JC
    Int J Biochem Cell Biol; 2008; 40(9):1753-63. PubMed ID: 18296102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of human choline kinase alpha and beta in carcinogenesis: a different role in lipid metabolism and biological functions.
    Gallego-Ortega D; Gómez del Pulgar T; Valdés-Mora F; Cebrián A; Lacal JC
    Adv Enzyme Regul; 2011; 51(1):183-94. PubMed ID: 21035492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress in the study of antitumor drug targeting on the Ras signaling pathway].
    Zhu YJ; Jiang FC
    Yao Xue Xue Bao; 2009 Jan; 44(1):1-10. PubMed ID: 19350814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAS: target for cancer therapy.
    Saxena N; Lahiri SS; Hambarde S; Tripathi RP
    Cancer Invest; 2008 Nov; 26(9):948-55. PubMed ID: 18798058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical target promiscuity: lessons from ras molecular trials.
    Rengan R; Cengel KA; Hahn SM
    Cancer Metastasis Rev; 2008 Sep; 27(3):403-14. PubMed ID: 18461427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signalling networks that cause cancer.
    McCormick F
    Trends Cell Biol; 1999 Dec; 9(12):M53-6. PubMed ID: 10611683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flagellin and lipopolysaccharide stimulate the MEK-ERK signaling pathway in chicken heterophils through differential activation of the small GTPases, Ras and Rap1.
    Kogut MH; Genovese KJ; He H
    Mol Immunol; 2007 Mar; 44(7):1729-36. PubMed ID: 17045653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal therapy of human pancreatic cancer and NF1-deficient breast cancer xenograft in mice by a combination of PP1 and GL-2003, anti-PAK1 drugs (Tyr-kinase inhibitors).
    Hirokawa Y; Levitzki A; Lessene G; Baell J; Xiao Y; Zhu H; Maruta H
    Cancer Lett; 2007 Jan; 245(1-2):242-51. PubMed ID: 16540233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.