These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 15013667)
1. Reserve carbohydrates maintain the viability of Saccharomyces cerevisiae cells during chronological aging. Samokhvalov V; Ignatov V; Kondrashova M Mech Ageing Dev; 2004 Mar; 125(3):229-35. PubMed ID: 15013667 [TBL] [Abstract][Full Text] [Related]
2. [Role of trehalose and glycogen in the survival of aging Saccharomyces cerevisiae cells]. Samokhvalov VA; Mel'nikov GV; Ignatov VV Mikrobiologiia; 2004; 73(4):449-54. PubMed ID: 15521168 [TBL] [Abstract][Full Text] [Related]
3. Role of reserve carbohydrates in the growth dynamics of Saccharomyces cerevisiae. Guillou V; Plourde-Owobi L; Parrou JL; Goma G; François J FEMS Yeast Res; 2004 Sep; 4(8):773-87. PubMed ID: 15450184 [TBL] [Abstract][Full Text] [Related]
4. [Effect of nitrogen and phosphorus in the medium on the level of reserve carbohydrates in the cells of a dividing baker's yeast culture]. Bocharova NN; Chernysh VG; Palagina NK Mikrobiologiia; 1975; 44(5):832-8. PubMed ID: 1107759 [TBL] [Abstract][Full Text] [Related]
5. [Effect of temperature and the active acidity of the medium on the metabolism of reserve carbohydrates and the survivability of baker's yeast]. Chernysh VG; Bocharova NN Prikl Biokhim Mikrobiol; 1975; 11(5):662-8. PubMed ID: 241991 [TBL] [Abstract][Full Text] [Related]
6. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Parrou JL; Enjalbert B; Plourde L; Bauche A; Gonzalez B; François J Yeast; 1999 Feb; 15(3):191-203. PubMed ID: 10077186 [TBL] [Abstract][Full Text] [Related]
7. [Metabolism of reserve carbohydrates in multiplying and resting yeast cells]. Bocharova NN; Chernysh VG; Ozerova VP Mikrobiologiia; 1973; 42(5):800-5. PubMed ID: 4600722 [No Abstract] [Full Text] [Related]
8. Gaseous environments modify reserve carbohydrate contents and cell survival in the brewing yeast Saccharomyces cerevisiae. Pham TH; Mauvais G; Vergoignan C; De Coninck J; Cachon R; Feron G Biotechnol Lett; 2008 Feb; 30(2):287-94. PubMed ID: 17882380 [TBL] [Abstract][Full Text] [Related]
9. The association of glycolytic enzymes from yeast confers resistance against inhibition by trehalose. Araiza-Olivera D; Sampedro JG; Mújica A; Peña A; Uribe-Carvajal S FEMS Yeast Res; 2010 May; 10(3):282-9. PubMed ID: 20148975 [TBL] [Abstract][Full Text] [Related]
10. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. François J; Parrou JL FEMS Microbiol Rev; 2001 Jan; 25(1):125-45. PubMed ID: 11152943 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of Krebs cycle and activation of glyoxylate cycle in the course of chronological aging of Saccharomyces cerevisiae. Compensatory role of succinate oxidation. Samokhvalov V; Ignatov V; Kondrashova M Biochimie; 2004 Jan; 86(1):39-46. PubMed ID: 14987799 [TBL] [Abstract][Full Text] [Related]
12. [Comparative analysis of glycogen and trehalose accumulation in methylotrophic and nonmethylotrophic yeasts]. Turkel S Mikrobiologiia; 2006; 75(6):737-41. PubMed ID: 17205796 [TBL] [Abstract][Full Text] [Related]
13. [Effect of cell reserve carbohydrates on an increase in the keeping qualities of baker's yeast]. Bocharova NN; Chernysh VG Mikrobiologiia; 1979; 48(1):153-6. PubMed ID: 370515 [TBL] [Abstract][Full Text] [Related]
14. The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Larsson C; Påhlman IL; Gustafsson L Yeast; 2000 Jun; 16(9):797-809. PubMed ID: 10861904 [TBL] [Abstract][Full Text] [Related]
15. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae. Xu Z; Tsurugi K Yeast; 2007 Mar; 24(3):161-70. PubMed ID: 17351907 [TBL] [Abstract][Full Text] [Related]
16. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen. Jørgensen H; Olsson L; Rønnow B; Palmqvist EA Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):310-7. PubMed ID: 12111163 [TBL] [Abstract][Full Text] [Related]
17. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells. Nakamura T; Takagi H; Shima J Cryobiology; 2009 Apr; 58(2):170-4. PubMed ID: 19126409 [TBL] [Abstract][Full Text] [Related]
18. Dynamic 13C-tracer study of storage carbohydrate pools in aerobic glucose-limited Saccharomyces cerevisiae confirms a rapid steady-state turnover and fast mobilization during a modest stepup in the glucose uptake rate. Aboka FO; Heijnen JJ; van Winden WA FEMS Yeast Res; 2009 Mar; 9(2):191-201. PubMed ID: 19220865 [TBL] [Abstract][Full Text] [Related]
19. Oxidative stress and chronological aging in glycogen-phosphorylase-deleted yeast. Favre C; Aguilar PS; Carrillo MC Free Radic Biol Med; 2008 Nov; 45(10):1446-56. PubMed ID: 18804161 [TBL] [Abstract][Full Text] [Related]
20. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Parrou JL; Teste MA; François J Microbiology (Reading); 1997 Jun; 143 ( Pt 6)():1891-1900. PubMed ID: 9202465 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]