These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 15013765)
1. Glucosylceramides in Colletotrichum gloeosporioides are involved in the differentiation of conidia into mycelial cells. da Silva AF; Rodrigues ML; Farias SE; Almeida IC; Pinto MR; Barreto-Bergter E FEBS Lett; 2004 Mar; 561(1-3):137-43. PubMed ID: 15013765 [TBL] [Abstract][Full Text] [Related]
2. Characterization of Scedosporium apiospermum glucosylceramides and their involvement in fungal development and macrophage functions. Rollin-Pinheiro R; Liporagi-Lopes LC; de Meirelles JV; Souza LM; Barreto-Bergter E PLoS One; 2014; 9(5):e98149. PubMed ID: 24878570 [TBL] [Abstract][Full Text] [Related]
3. A monoclonal antibody to glucosylceramide inhibits the growth of Fonsecaea pedrosoi and enhances the antifungal action of mouse macrophages. Nimrichter L; Barreto-Bergter E; Mendonça-Filho RR; Kneipp LF; Mazzi MT; Salve P; Farias SE; Wait R; Alviano CS; Rodrigues ML Microbes Infect; 2004 Jun; 6(7):657-65. PubMed ID: 15158773 [TBL] [Abstract][Full Text] [Related]
4. Structural analysis of glucosylceramides (GlcCer) from species of the Pseudallescheria/Scedosporium complex. Calixto RO; Rollin-Pinheiro R; da Silva MI; Liporagi-Lopes LC; Vieira JM; Sassaki GL; Barreto-Bergter E Fungal Biol; 2016 Feb; 120(2):166-72. PubMed ID: 26781373 [TBL] [Abstract][Full Text] [Related]
5. Characterization of sphingolipids from mycopathogens: factors correlating with expression of 2-hydroxy fatty acyl (E)-Delta 3-unsaturation in cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus. Toledo MS; Levery SB; Straus AH; Suzuki E; Momany M; Glushka J; Moulton JM; Takahashi HK Biochemistry; 1999 Jun; 38(22):7294-306. PubMed ID: 10353841 [TBL] [Abstract][Full Text] [Related]
6. Glucosylceramides From Xisto MIDDS; Henao JEM; Dias LDS; Santos GMP; Calixto ROR; Bernardino MC; Taborda CP; Barreto-Bergter E Front Microbiol; 2019; 10():554. PubMed ID: 30967849 [No Abstract] [Full Text] [Related]
7. Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Pinto MR; Rodrigues ML; Travassos LR; Haido RM; Wait R; Barreto-Bergter E Glycobiology; 2002 Apr; 12(4):251-60. PubMed ID: 12042248 [TBL] [Abstract][Full Text] [Related]
8. The antifungal activity of widdrol and its biotransformation by Colletotrichum gloeosporioides (penz.) Penz. & Sacc. and Botrytis cinerea Pers.: Fr. Nuñez YO; Salabarria IS; Collado IG; Hernandez-Galan R J Agric Food Chem; 2006 Oct; 54(20):7517-21. PubMed ID: 17002416 [TBL] [Abstract][Full Text] [Related]
9. Longifoside-A and -B: two new cerebrosides from Mentha longifolia (Lamiaceae). Shaiq Ali M; Ahmed W; Saleem M; Ashfaq Ali M Nat Prod Res; 2006 Jul; 20(8):715-23. PubMed ID: 16753903 [TBL] [Abstract][Full Text] [Related]
10. A ConA-like lectin from Dioclea guianensis Benth. has antifungal activity against Colletotrichum gloeosporioides, unlike its homologues, ConM and ConA. Araújo-Filho JH; Vasconcelos IM; Martins-Miranda AS; Gondim DM; Oliveira JT J Agric Food Chem; 2010 Apr; 58(7):4090-6. PubMed ID: 20201549 [TBL] [Abstract][Full Text] [Related]
11. Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Barhoom S; Sharon A Fungal Genet Biol; 2007 Jan; 44(1):32-43. PubMed ID: 16950636 [TBL] [Abstract][Full Text] [Related]
12. Fumigant activity of essential oils and components of Illicium verum and Schizonepeta tenuifolia against Botrytis cinerea and Colletotrichum gloeosporioides. Lee SO; Park IK; Choi GJ; Lim HK; Jang KS; Cho KY; Shin SC; Kim JC J Microbiol Biotechnol; 2007 Sep; 17(9):1568-72. PubMed ID: 18062240 [TBL] [Abstract][Full Text] [Related]
13. In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango. Tang L; Mo J; Guo T; Huang S; Li Q; Ning P; Hsiang T World J Microbiol Biotechnol; 2019 Dec; 36(1):4. PubMed ID: 31832786 [TBL] [Abstract][Full Text] [Related]
14. Quantitation and structural determination of glucosylceramides contained in sake lees. Takahashi K; Izumi K; Nakahata E; Hirata M; Sawada K; Tsuge K; Nagao K; Kitagaki H J Oleo Sci; 2014; 63(1):15-23. PubMed ID: 24389795 [TBL] [Abstract][Full Text] [Related]
15. Screening of Yucatecan plant extracts to control Colletotrichum gloeosporioides and isolation of a New Pimarene from Acacia pennatula. Peraza-Sánchez SR; Chan-Che EO; Ruiz-Sánchez E J Agric Food Chem; 2005 Apr; 53(7):2429-32. PubMed ID: 15796574 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens. Jeong MH; Lee YS; Cho JY; Ahn YS; Moon JH; Hyun HN; Cha GS; Kim KY Microb Pathog; 2017 Sep; 110():645-653. PubMed ID: 28733027 [TBL] [Abstract][Full Text] [Related]
17. Isolation, identification, and activity in vitro of killer yeasts against Colletotrichum gloeosporioides isolated from tropical fruits. de Lima JR; Gonçalves LR; Brandão LR; Rosa CA; Viana FM J Basic Microbiol; 2013 Jul; 53(7):590-9. PubMed ID: 22915228 [TBL] [Abstract][Full Text] [Related]
18. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. Nesher I; Barhoom S; Sharon A BMC Biol; 2008 Feb; 6():9. PubMed ID: 18275611 [TBL] [Abstract][Full Text] [Related]
19. Purification and identification of cutinases from Colletotrichum kahawae and Colletotrichum gloeosporioides. Chen Z; Franco CF; Baptista RP; Cabral JM; Coelho AV; Rodrigues CJ; Melo EP Appl Microbiol Biotechnol; 2007 Jan; 73(6):1306-13. PubMed ID: 17043825 [TBL] [Abstract][Full Text] [Related]
20. Dicliptercerebroside, a novel cerebroside from Dicliptera chinensis. Gao YT; Yang XW; Ai TM J Asian Nat Prod Res; 2007; 9(6-8):763-70. PubMed ID: 17994394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]