BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 15013767)

  • 1. Significance of C-terminal sequence elements for Petunia flavanone 3beta-hydroxylase activity.
    Wellmann F; Matern U; Lukacin R
    FEBS Lett; 2004 Mar; 561(1-3):149-54. PubMed ID: 15013767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of recombinant flavanone 3beta-hydroxylase from petunia hybrida and assignment of the primary site of proteolytic degradation.
    Lukacin R; Gröning I; Schiltz E; Britsch L; Matern U
    Arch Biochem Biophys; 2000 Mar; 375(2):364-70. PubMed ID: 10700394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-directed mutagenesis of the active site serine290 in flavanone 3beta-hydroxylase from Petunia hybrida.
    Lukacin R; Gröning I; Pieper U; Matern U
    Eur J Biochem; 2000 Feb; 267(3):853-60. PubMed ID: 10651823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase.
    Lukacin R; Britsch L
    Eur J Biochem; 1997 Nov; 249(3):748-57. PubMed ID: 9395322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis.
    Gebhardt YH; Witte S; Steuber H; Matern U; Martens S
    Plant Physiol; 2007 Jul; 144(3):1442-54. PubMed ID: 17535823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The monomeric polypeptide comprises the functional flavanone 3beta-hydroxylase from Petunia hybrida.
    Lukacin R; Urbanke C; Gröning I; Matern U
    FEBS Lett; 2000 Feb; 467(2-3):353-8. PubMed ID: 10675568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavonol synthase from Citrus unshiu is a bifunctional dioxygenase.
    Lukacin R; Wellmann F; Britsch L; Martens S; Matern U
    Phytochemistry; 2003 Feb; 62(3):287-92. PubMed ID: 12620339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: anthocyanidin synthase, flavonol synthase, and flavanone 3beta-hydroxylase.
    Turnbull JJ; Nakajima J; Welford RW; Yamazaki M; Saito K; Schofield CJ
    J Biol Chem; 2004 Jan; 279(2):1206-16. PubMed ID: 14570878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis.
    Cheng AX; Han XJ; Wu YF; Lou HX
    Int J Mol Sci; 2014 Jan; 15(1):1080-95. PubMed ID: 24434621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flavanone 3-hydroxylase expression in Citrus paradisi and Petunia hybrida seedlings.
    Pelt JL; Downes WA; Schoborg RV; McIntosh CA
    Phytochemistry; 2003 Sep; 64(2):435-44. PubMed ID: 12943760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of a Plagiochasma appendiculatum flavone synthase I showing flavanone 2-hydroxylase activity.
    Han XJ; Wu YF; Gao S; Yu HN; Xu RX; Lou HX; Cheng AX
    FEBS Lett; 2014 Jun; 588(14):2307-14. PubMed ID: 24859082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of TMLH variants and definition of domains required for catalytic activity and mitochondrial targeting.
    Monfregola J; Cevenini A; Terracciano A; van Vlies N; Arbucci S; Wanders RJ; D'Urso M; Vaz FM; Ursini MV
    J Cell Physiol; 2005 Sep; 204(3):839-47. PubMed ID: 15754339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli.
    Miyahisa I; Funa N; Ohnishi Y; Martens S; Moriguchi T; Horinouchi S
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):53-8. PubMed ID: 16133333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and antigenicity of flavone synthase I from irradiated parsley cells.
    Lukacin R; Matern U; Junghanns KT; Heskamp ML; Britsch L; Forkmann G; Martens S
    Arch Biochem Biophys; 2001 Sep; 393(1):177-83. PubMed ID: 11516175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flavanone 3beta-hydroxylases from rice: key enzymes for favonol and anthocyanin biosynthesis.
    Kim JH; Lee YJ; Kim BG; Lim Y; Ahn JH
    Mol Cells; 2008 Apr; 25(2):312-6. PubMed ID: 18413994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional expression and mutational analysis of flavonol synthase from Citrus unshiu.
    Wellmann F; Lukacin R; Moriguchi T; Britsch L; Schiltz E; Matern U
    Eur J Biochem; 2002 Aug; 269(16):4134-42. PubMed ID: 12180990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lys296 and Arg299 residues in the C-terminus of MD-ACO1 are essential for a 1-aminocyclopropane-1-carboxylate oxidase enzyme activity.
    Yoo A; Seo YS; Jung JW; Sung SK; Kim WT; Lee W; Yang DR
    J Struct Biol; 2006 Dec; 156(3):407-20. PubMed ID: 17046279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two novel transposable elements in a cytochrome P450 gene govern anthocyanin biosynthesis of commercial petunias.
    Matsubara K; Kodama H; Kokubun H; Watanabe H; Ando T
    Gene; 2005 Sep; 358():121-6. PubMed ID: 16051450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elucidation of active site residues of Arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols.
    Chua CS; Biermann D; Goo KS; Sim TS
    Phytochemistry; 2008 Jan; 69(1):66-75. PubMed ID: 17719613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citrus fruit bitter flavors: isolation and functional characterization of the gene Cm1,2RhaT encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus.
    Frydman A; Weisshaus O; Bar-Peled M; Huhman DV; Sumner LW; Marin FR; Lewinsohn E; Fluhr R; Gressel J; Eyal Y
    Plant J; 2004 Oct; 40(1):88-100. PubMed ID: 15361143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.