BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 15014228)

  • 1. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance 13C NMR spectroscopy.
    Daley ME; Sykes BD
    J Biomol NMR; 2004 Jun; 29(2):139-50. PubMed ID: 15014228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of side chain conformational flexibility in surface recognition by Tenebrio molitor antifreeze protein.
    Daley ME; Sykes BD
    Protein Sci; 2003 Jul; 12(7):1323-31. PubMed ID: 12824479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and dynamics of a beta-helical antifreeze protein.
    Daley ME; Spyracopoulos L; Jia Z; Davies PL; Sykes BD
    Biochemistry; 2002 Apr; 41(17):5515-25. PubMed ID: 11969412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
    Ramya L; Ramakrishnan V
    Mol Inform; 2016 Jul; 35(6-7):268-77. PubMed ID: 27492241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites?
    Strom CS; Liu XY; Jia Z
    Biophys J; 2005 Oct; 89(4):2618-27. PubMed ID: 16055536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures, dynamics, and hydrogen-bond interactions of antifreeze proteins in TIP4P/Ice water and their dependence on force fields.
    Lee H
    PLoS One; 2018; 13(6):e0198887. PubMed ID: 29879205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
    Modig K; Qvist J; Marshall CB; Davies PL; Halle B
    Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bonding on the ice-binding face of a beta-helical antifreeze protein indicated by amide proton NMR chemical shifts.
    Daley ME; Graether SP; Sykes BD
    Biochemistry; 2004 Oct; 43(41):13012-7. PubMed ID: 15476394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the Ice-Binding Site of an Insect Antifreeze Protein Using Sum-Frequency Generation Spectroscopy.
    Meister K; Lotze S; Olijve LL; DeVries AL; Duman JG; Voets IK; Bakker HJ
    J Phys Chem Lett; 2015 Apr; 6(7):1162-7. PubMed ID: 26262966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of beta-helical antifreeze protein points to a general ice binding model.
    Leinala EK; Davies PL; Jia Z
    Structure; 2002 May; 10(5):619-27. PubMed ID: 12015145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal motions of apo-neocarzinostatin as studied by 13C NMR methine relaxation at natural abundance.
    Mispelter J; Lefèvre C; Adjadj E; Quiniou E; Favaudon V
    J Biomol NMR; 1995 Apr; 5(3):233-44. PubMed ID: 7787421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study on the function of water within a beta-helix antifreeze protein dimer and in the process of ice-protein binding.
    Yang Z; Zhou Y; Liu K; Cheng Y; Liu R; Chen G; Jia Z
    Biophys J; 2003 Oct; 85(4):2599-605. PubMed ID: 14507722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Polar and Nonpolar Groups in the Activity of Antifreeze Proteins: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2018 Oct; 122(40):9389-9398. PubMed ID: 30222341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the binding of antifreeze proteins to ice surfaces via 13C spin lattice relaxation solid-state NMR.
    Mao Y; Ba Y
    Biophys J; 2006 Aug; 91(3):1059-68. PubMed ID: 16648161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes.
    Lee H
    J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization and preliminary X-ray analysis of insect antifreeze protein from the beetle Tenebrio molitor.
    Liou YC; Davies PL; Jia Z
    Acta Crystallogr D Biol Crystallogr; 2000 Mar; 56(Pt 3):354-6. PubMed ID: 10713525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cloning, sequencing and prokaryotic expression of cDNAs for the antifreeze protein family from the beetle Tenebrio molitor].
    Liu ZY; Wang Y; Lü GD; Wang XL; Zhang FC; Ma J
    Yi Chuan; 2006 Dec; 28(12):1532-40. PubMed ID: 17138539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.