These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
29. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Techy F; Mageswaran P; Colbrunn RW; Bonner TF; McLain RF Spine J; 2013 May; 13(5):572-9. PubMed ID: 23498926 [TBL] [Abstract][Full Text] [Related]
30. Novel pedicle screw and plate system provides superior stability in unilateral fixation for minimally invasive transforaminal lumbar interbody fusion: an in vitro biomechanical study. Li J; Xiao H; Zhu Q; Zhou Y; Li C; Liu H; Huang Z; Shang J PLoS One; 2015; 10(3):e0123134. PubMed ID: 25807513 [TBL] [Abstract][Full Text] [Related]
31. Biomechanical analysis of a novel posterior construct in a transforaminal lumbar interbody fusion model an in vitro study. Sethi A; Muzumdar AM; Ingalhalikar A; Vaidya R Spine J; 2011 Sep; 11(9):863-9. PubMed ID: 21802998 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of a lumbar intervertebral spacer with integrated screws as a stand-alone fixation device. Beaubien BP; Freeman AL; Turner JL; Castro CA; Armstrong WD; Waugh LG; Dryer RF J Spinal Disord Tech; 2010 Jul; 23(5):351-8. PubMed ID: 20084028 [TBL] [Abstract][Full Text] [Related]
33. A new stand-alone anterior lumbar interbody fusion device: biomechanical comparison with established fixation techniques. Cain CM; Schleicher P; Gerlach R; Pflugmacher R; Scholz M; Kandziora F Spine (Phila Pa 1976); 2005 Dec; 30(23):2631-6. PubMed ID: 16319749 [TBL] [Abstract][Full Text] [Related]
34. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA; Doulgeris JJ; Aghayev K; Lee WE; Volkov A; Vrionis FD J Neurosurg Spine; 2014 Feb; 20(2):209-19. PubMed ID: 24286528 [TBL] [Abstract][Full Text] [Related]
35. Biomechanical stability of lateral interbody implants and supplemental fixation in a cadaveric degenerative spondylolisthesis model. Fogel GR; Turner AW; Dooley ZA; Cornwall GB Spine (Phila Pa 1976); 2014 Sep; 39(19):E1138-46. PubMed ID: 24979274 [TBL] [Abstract][Full Text] [Related]
37. Types of spinal instability that require interbody support in posterior lumbar reconstruction: an in vitro biomechanical investigation. Oda I; Abumi K; Yu BS; Sudo H; Minami A Spine (Phila Pa 1976); 2003 Jul; 28(14):1573-80. PubMed ID: 12865847 [TBL] [Abstract][Full Text] [Related]
38. Biomechanical analysis of lateral interbody fusion strategies for adjacent segment degeneration in the lumbar spine. Metzger MF; Robinson ST; Maldonado RC; Rawlinson J; Liu J; Acosta FL Spine J; 2017 Jul; 17(7):1004-1011. PubMed ID: 28323239 [TBL] [Abstract][Full Text] [Related]
39. Computational comparison of anterior lumbar interbody fusion and oblique lumbar interbody fusion with various supplementary fixation systems: a finite element analysis. Ouyang P; Tan Q; He X; Zhao B J Orthop Surg Res; 2023 Jan; 18(1):4. PubMed ID: 36593501 [TBL] [Abstract][Full Text] [Related]
40. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Sim HB; Murovic JA; Cho BY; Lim TJ; Park J J Neurosurg Spine; 2010 Jun; 12(6):700-8. PubMed ID: 20515358 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]