These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Hitti E; Iakovleva T; Brook M; Deppenmeier S; Gruber AD; Radzioch D; Clark AR; Blackshear PJ; Kotlyarov A; Gaestel M Mol Cell Biol; 2006 Mar; 26(6):2399-407. PubMed ID: 16508014 [TBL] [Abstract][Full Text] [Related]
5. Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Clement SL; Scheckel C; Stoecklin G; Lykke-Andersen J Mol Cell Biol; 2011 Jan; 31(2):256-66. PubMed ID: 21078877 [TBL] [Abstract][Full Text] [Related]
6. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. Tiedje C; Ronkina N; Tehrani M; Dhamija S; Laass K; Holtmann H; Kotlyarov A; Gaestel M PLoS Genet; 2012 Sep; 8(9):e1002977. PubMed ID: 23028373 [TBL] [Abstract][Full Text] [Related]
7. Control of mRNA decay by phosphorylation of tristetraprolin. Sandler H; Stoecklin G Biochem Soc Trans; 2008 Jun; 36(Pt 3):491-6. PubMed ID: 18481987 [TBL] [Abstract][Full Text] [Related]
8. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. Chrestensen CA; Schroeder MJ; Shabanowitz J; Hunt DF; Pelo JW; Worthington MT; Sturgill TW J Biol Chem; 2004 Mar; 279(11):10176-84. PubMed ID: 14688255 [TBL] [Abstract][Full Text] [Related]
9. The Conserved CNOT1 Interaction Motif of Tristetraprolin Regulates ARE-mRNA Decay Independently of the p38 MAPK-MK2 Kinase Pathway. Carreño A; Lykke-Andersen J Mol Cell Biol; 2022 Sep; 42(9):e0005522. PubMed ID: 35920669 [TBL] [Abstract][Full Text] [Related]
10. Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mahtani KR; Brook M; Dean JL; Sully G; Saklatvala J; Clark AR Mol Cell Biol; 2001 Oct; 21(19):6461-9. PubMed ID: 11533235 [TBL] [Abstract][Full Text] [Related]
11. Convergent actions of I kappa B kinase beta and protein kinase C delta modulate mRNA stability through phosphorylation of 14-3-3 beta complexed with tristetraprolin. Gringhuis SI; García-Vallejo JJ; van Het Hof B; van Dijk W Mol Cell Biol; 2005 Aug; 25(15):6454-63. PubMed ID: 16024783 [TBL] [Abstract][Full Text] [Related]
12. Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. Sun L; Stoecklin G; Van Way S; Hinkovska-Galcheva V; Guo RF; Anderson P; Shanley TP J Biol Chem; 2007 Feb; 282(6):3766-77. PubMed ID: 17170118 [TBL] [Abstract][Full Text] [Related]
13. Activation of the MKK3-p38-MK2-ZFP36 Axis by Coronavirus Infection Restricts the Upregulation of AU-Rich Element-Containing Transcripts in Proinflammatory Responses. Li S; Liu S; Chen RA; Huang M; Fung TS; Liu DX J Virol; 2022 Mar; 96(5):e0208621. PubMed ID: 34985993 [TBL] [Abstract][Full Text] [Related]
14. The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. Tchen CR; Brook M; Saklatvala J; Clark AR J Biol Chem; 2004 Jul; 279(31):32393-400. PubMed ID: 15187092 [TBL] [Abstract][Full Text] [Related]
15. Luteolin inhibits inflammatory responses via p38/MK2/TTP-mediated mRNA stability. Wu W; Li D; Zong Y; Zhu H; Pan D; Xu T; Wang T; Wang T Molecules; 2013 Jul; 18(7):8083-94. PubMed ID: 23839113 [TBL] [Abstract][Full Text] [Related]
16. Structural and functional dissection of a conserved destabilizing element of cyclo-oxygenase-2 mRNA: evidence against the involvement of AUF-1 [AU-rich element/poly(U)-binding/degradation factor-1], AUF-2, tristetraprolin, HuR (Hu antigen R) or FBP1 (far-upstream-sequence-element-binding protein 1). Sully G; Dean JL; Wait R; Rawlinson L; Santalucia T; Saklatvala J; Clark AR Biochem J; 2004 Feb; 377(Pt 3):629-39. PubMed ID: 14594446 [TBL] [Abstract][Full Text] [Related]
17. Expression, purification, and biochemical characterization of the antiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications. Cao H Biochemistry; 2004 Nov; 43(43):13724-38. PubMed ID: 15504035 [TBL] [Abstract][Full Text] [Related]
18. MAPKAP kinases MK2 and MK3 in inflammation: complex regulation of TNF biosynthesis via expression and phosphorylation of tristetraprolin. Ronkina N; Menon MB; Schwermann J; Tiedje C; Hitti E; Kotlyarov A; Gaestel M Biochem Pharmacol; 2010 Dec; 80(12):1915-20. PubMed ID: 20599781 [TBL] [Abstract][Full Text] [Related]
19. Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Brook M; Tchen CR; Santalucia T; McIlrath J; Arthur JS; Saklatvala J; Clark AR Mol Cell Biol; 2006 Mar; 26(6):2408-18. PubMed ID: 16508015 [TBL] [Abstract][Full Text] [Related]
20. A novel mechanism of tumor suppression by destabilizing AU-rich growth factor mRNA. Stoecklin G; Gross B; Ming XF; Moroni C Oncogene; 2003 Jun; 22(23):3554-61. PubMed ID: 12789264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]