BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

795 related articles for article (PubMed ID: 15014504)

  • 21. Electrostatic contributions to colchicine binding within tubulin isotypes.
    Huzil JT; Barakat K; Tuszynski JA
    Electromagn Biol Med; 2009; 28(4):355-64. PubMed ID: 20017626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence divergence of Entamoeba histolytica tubulin is responsible for its altered tertiary structure.
    Roy D; Lohia A
    Biochem Biophys Res Commun; 2004 Jul; 319(3):1010-6. PubMed ID: 15184082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and thermodynamics of the tubulin-stathmin interaction.
    Steinmetz MO
    J Struct Biol; 2007 May; 158(2):137-47. PubMed ID: 17029844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of the colchicine ring A and its methoxy groups in the binding to tubulin and microtubule inhibition.
    Andreu JM; Perez-Ramirez B; Gorbunoff MJ; Ayala D; Timasheff SN
    Biochemistry; 1998 Jun; 37(23):8356-68. PubMed ID: 9622487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The B-ring substituent at C-7 of colchicine and the alpha-C-terminus of tubulin communicate through the "tail-body" interaction.
    Chakraborty S; Gupta S; Sarkar T; Poddar A; Pena J; Solana R; Tarazona R; Bhattacharyya B
    Proteins; 2004 Nov; 57(3):602-9. PubMed ID: 15382227
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery.
    Wang Y; Zhang H; Gigant B; Yu Y; Wu Y; Chen X; Lai Q; Yang Z; Chen Q; Yang J
    FEBS J; 2016 Jan; 283(1):102-11. PubMed ID: 26462166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The stathmin-derived I19L peptide interacts with FtsZ and alters its bundling.
    Clément MJ; Kuoch BT; Ha-Duong T; Joshi V; Hamon L; Toma F; Curmi PA; Savarin P
    Biochemistry; 2009 Oct; 48(41):9734-44. PubMed ID: 19743836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach.
    Nguyen TL; McGrath C; Hermone AR; Burnett JC; Zaharevitz DW; Day BW; Wipf P; Hamel E; Gussio R
    J Med Chem; 2005 Sep; 48(19):6107-16. PubMed ID: 16162011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vinblastine perturbation of tubulin protofilament structure: a computational insight.
    Rendine S; Pieraccini S; Sironi M
    Phys Chem Chem Phys; 2010 Dec; 12(47):15530-6. PubMed ID: 20978652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues.
    Sardar PS; Maity SS; Das L; Ghosh S
    Biochemistry; 2007 Dec; 46(50):14544-56. PubMed ID: 18041823
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two separate motifs cooperate to target stathmin-related proteins to the Golgi complex.
    Charbaut E; Chauvin S; Enslen H; Zamaroczy S; Sobel A
    J Cell Sci; 2005 May; 118(Pt 10):2313-23. PubMed ID: 15870110
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The binding of vinca domain agents to tubulin: structural and biochemical studies.
    Cormier A; Knossow M; Wang C; Gigant B
    Methods Cell Biol; 2010; 95():373-90. PubMed ID: 20466145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studying drug-tubulin interactions by X-ray crystallography.
    Dorleans A; Knossow M; Gigant B
    Methods Mol Med; 2007; 137():235-43. PubMed ID: 18085233
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variations in the colchicine-binding domain provide insight into the structural switch of tubulin.
    Dorléans A; Gigant B; Ravelli RB; Mailliet P; Mikol V; Knossow M
    Proc Natl Acad Sci U S A; 2009 Aug; 106(33):13775-9. PubMed ID: 19666559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deciphering the cellular functions of the Op18/Stathmin family of microtubule-regulators by plasma membrane-targeted localization.
    Holmfeldt P; Brannstrom K; Stenmark S; Gullberg M
    Mol Biol Cell; 2003 Sep; 14(9):3716-29. PubMed ID: 12972559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
    Caplow M; Fee L
    Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The stathmin-tubulin interaction and the regulation of the microtubule assembly].
    Gigant B; Martin-Barbey C; Curmi PA; Sobel A; Knossow M
    Pathol Biol (Paris); 2003 Feb; 51(1):33-8. PubMed ID: 12628290
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin.
    Ng DC; Lin BH; Lim CP; Huang G; Zhang T; Poli V; Cao X
    J Cell Biol; 2006 Jan; 172(2):245-57. PubMed ID: 16401721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Ser50 phosphorylation in SCG10 regulation of microtubule depolymerization.
    Togano T; Kurachi M; Watanabe M; Grenningloh G; Igarashi M
    J Neurosci Res; 2005 May; 80(4):475-80. PubMed ID: 15825189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into microtubule nucleation from the crystal structure of human gamma-tubulin.
    Aldaz H; Rice LM; Stearns T; Agard DA
    Nature; 2005 May; 435(7041):523-7. PubMed ID: 15917813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 40.