BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15016812)

  • 21. Covalent Capturing of Transient SUMO-SIM Interactions Using Unnatural Amino Acid Mutagenesis and Photocrosslinking.
    Taupitz KF; Dörner W; Mootz HD
    Chemistry; 2017 May; 23(25):5978-5982. PubMed ID: 28121373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SUMO-targeted ubiquitin ligases.
    Sriramachandran AM; Dohmen RJ
    Biochim Biophys Acta; 2014 Jan; 1843(1):75-85. PubMed ID: 24018209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions.
    Lamoliatte F; Bonneil E; Durette C; Caron-Lizotte O; Wildemann D; Zerweck J; Wenshuk H; Thibault P
    Mol Cell Proteomics; 2013 Sep; 12(9):2536-50. PubMed ID: 23750026
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?
    Gill G
    Genes Dev; 2004 Sep; 18(17):2046-59. PubMed ID: 15342487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fourier transform ion cyclotron resonance mass spectrometry for the analysis of small ubiquitin-like modifier (SUMO) modification: identification of lysines in RanBP2 and SUMO targeted for modification during the E3 autoSUMOylation reaction.
    Cooper HJ; Tatham MH; Jaffray E; Heath JK; Lam TT; Marshall AG; Hay RT
    Anal Chem; 2005 Oct; 77(19):6310-9. PubMed ID: 16194093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SUMO wrestling with type 1 diabetes.
    Li M; Guo D; Isales CM; Eizirik DL; Atkinson M; She JX; Wang CY
    J Mol Med (Berl); 2005 Jul; 83(7):504-13. PubMed ID: 15806321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human Regulatory Protein Ki-1/57 Is a Target of SUMOylation and Affects PML Nuclear Body Formation.
    Saito Â; Souza EE; Costa FC; Meirelles GV; Gonçalves KA; Santos MT; Bressan GC; McComb ME; Costello CE; Whelan SA; Kobarg J
    J Proteome Res; 2017 Sep; 16(9):3147-3157. PubMed ID: 28695742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ubc9 fusion-directed SUMOylation (UFDS): a method to analyze function of protein SUMOylation.
    Jakobs A; Koehnke J; Himstedt F; Funk M; Korn B; Gaestel M; Niedenthal R
    Nat Methods; 2007 Mar; 4(3):245-50. PubMed ID: 17277783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and Characterization of SUMO-SIM Interactions.
    Husnjak K; Keiten-Schmitz J; Müller S
    Methods Mol Biol; 2016; 1475():79-98. PubMed ID: 27631799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fluorescence-resonance-energy-transfer-based protease activity assay and its use to monitor paralog-specific small ubiquitin-like modifier processing.
    Martin SF; Hattersley N; Samuel ID; Hay RT; Tatham MH
    Anal Biochem; 2007 Apr; 363(1):83-90. PubMed ID: 17288980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation.
    Owerbach D; McKay EM; Yeh ET; Gabbay KH; Bohren KM
    Biochem Biophys Res Commun; 2005 Nov; 337(2):517-20. PubMed ID: 16198310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repression of Smad4 transcriptional activity by SUMO modification.
    Long J; Wang G; He D; Liu F
    Biochem J; 2004 Apr; 379(Pt 1):23-9. PubMed ID: 14750902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. E1B-55K-Mediated Regulation of RNF4 SUMO-Targeted Ubiquitin Ligase Promotes Human Adenovirus Gene Expression.
    Müncheberg S; Hay RT; Ip WH; Meyer T; Weiß C; Brenke J; Masser S; Hadian K; Dobner T; Schreiner S
    J Virol; 2018 Jul; 92(13):. PubMed ID: 29695423
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry.
    Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K
    Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation.
    Tatham MH; Kim S; Yu B; Jaffray E; Song J; Zheng J; Rodriguez MS; Hay RT; Chen Y
    Biochemistry; 2003 Aug; 42(33):9959-69. PubMed ID: 12924945
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SUMOylation Landscape of Renal Cortical Collecting Duct Cells.
    Wu Q; Aroankins TS; Cheng L; Fenton RA
    J Proteome Res; 2019 Oct; 18(10):3640-3648. PubMed ID: 31502464
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TRIM5α is a SUMO substrate.
    Dutrieux J; Portilho DM; Arhel NJ; Hazan U; Nisole S
    Retrovirology; 2015 Mar; 12():28. PubMed ID: 25880753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Fluorescent In Vitro Assay to Investigate Paralog-Specific SUMO Conjugation.
    Eisenhardt N; Chaugule VK; Pichler A
    Methods Mol Biol; 2016; 1475():67-78. PubMed ID: 27631798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress.
    Baczyk D; Audette MC; Coyaud E; Raught B; Kingdom JC
    J Physiol; 2018 May; 596(9):1587-1600. PubMed ID: 29468681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.