BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15016812)

  • 41. Large-Scale Purification of Small Ubiquitin-Like Modifier (SUMO)-Modified Proteins from
    Nie M; Boddy MN
    Cold Spring Harb Protoc; 2017 Mar; 2017(3):pdb.prot091603. PubMed ID: 28250213
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sumoylation of the yeast Gcn5 protein.
    Sterner DE; Nathan D; Reindle A; Johnson ES; Berger SL
    Biochemistry; 2006 Jan; 45(3):1035-42. PubMed ID: 16411780
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway.
    Hirano Y; Murata S; Tanaka K; Shimizu M; Sato R
    J Biol Chem; 2003 May; 278(19):16809-19. PubMed ID: 12615929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Something about SUMO inhibits transcription.
    Gill G
    Curr Opin Genet Dev; 2005 Oct; 15(5):536-41. PubMed ID: 16095902
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the C-terminal diglycine motif of SUMO-1/3.
    Yamada K; Muramatsu M; Saito D; Sato-Oka M; Saito M; Moriyama T; Saitoh H
    Biosci Biotechnol Biochem; 2012; 76(5):1035-7. PubMed ID: 22738983
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription.
    Ling Y; Sankpal UT; Robertson AK; McNally JG; Karpova T; Robertson KD
    Nucleic Acids Res; 2004; 32(2):598-610. PubMed ID: 14752048
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.
    Wiechmann S; Gärtner A; Kniss A; Stengl A; Behrends C; Rogov VV; Rodriguez MS; Dötsch V; Müller S; Ernst A
    J Biol Chem; 2017 Sep; 292(37):15340-15351. PubMed ID: 28784659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chip-based analysis of SUMO (small ubiquitin-like modifier) conjugation to a target protein.
    Oh YH; Hong MY; Jin Z; Lee T; Han MK; Park S; Kim HS
    Biosens Bioelectron; 2007 Feb; 22(7):1260-7. PubMed ID: 16820290
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Purification of SUMO Conjugates from Arabidopsis for Mass Spectrometry Analysis.
    Rytz TC; Miller MJ; Vierstra RD
    Methods Mol Biol; 2016; 1475():257-81. PubMed ID: 27631811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Ubiquitin-Like SUMO System and Heart Function: From Development to Disease.
    Mendler L; Braun T; Müller S
    Circ Res; 2016 Jan; 118(1):132-44. PubMed ID: 26837744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation.
    Ji Z; Degerny C; Vintonenko N; Deheuninck J; Foveau B; Leroy C; Coll J; Tulasne D; Baert JL; Fafeur V
    Oncogene; 2007 Jan; 26(3):395-406. PubMed ID: 16862185
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methods to study SUMO dynamics in yeast.
    Pabst S; Döring LM; Petreska N; Dohmen RJ
    Methods Enzymol; 2019; 618():187-210. PubMed ID: 30850052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein.
    Endter C; Kzhyshkowska J; Stauber R; Dobner T
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11312-7. PubMed ID: 11553772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of Substrates of Protein-Group SUMOylation.
    Psakhye I; Jentsch S
    Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions.
    Lumpkin RJ; Gu H; Zhu Y; Leonard M; Ahmad AS; Clauser KR; Meyer JG; Bennett EJ; Komives EA
    Nat Commun; 2017 Oct; 8(1):1171. PubMed ID: 29079793
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling.
    Rui HL; Fan E; Zhou HM; Xu Z; Zhang Y; Lin SC
    J Biol Chem; 2002 Nov; 277(45):42981-6. PubMed ID: 12223491
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modification of Msx1 by SUMO-1.
    Gupta V; Bei M
    Biochem Biophys Res Commun; 2006 Jun; 345(1):74-7. PubMed ID: 16678795
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of DNA damage responses by ubiquitin and SUMO.
    Jackson SP; Durocher D
    Mol Cell; 2013 Mar; 49(5):795-807. PubMed ID: 23416108
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice.
    Tirard M; Hsiao HH; Nikolov M; Urlaub H; Melchior F; Brose N
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):21122-7. PubMed ID: 23213215
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-covalent interaction between nucleocapsid protein of Tula hantavirus and small ubiquitin-related modifier-1, SUMO-1.
    Kaukinen P; Vaheri A; Plyusnin A
    Virus Res; 2003 Mar; 92(1):37-45. PubMed ID: 12606074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.