These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 15016812)
41. Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress. Baczyk D; Audette MC; Coyaud E; Raught B; Kingdom JC J Physiol; 2018 May; 596(9):1587-1600. PubMed ID: 29468681 [TBL] [Abstract][Full Text] [Related]
42. Large-Scale Purification of Small Ubiquitin-Like Modifier (SUMO)-Modified Proteins from Nie M; Boddy MN Cold Spring Harb Protoc; 2017 Mar; 2017(3):pdb.prot091603. PubMed ID: 28250213 [TBL] [Abstract][Full Text] [Related]
43. Sumoylation of the yeast Gcn5 protein. Sterner DE; Nathan D; Reindle A; Johnson ES; Berger SL Biochemistry; 2006 Jan; 45(3):1035-42. PubMed ID: 16411780 [TBL] [Abstract][Full Text] [Related]
44. Sterol regulatory element-binding proteins are negatively regulated through SUMO-1 modification independent of the ubiquitin/26 S proteasome pathway. Hirano Y; Murata S; Tanaka K; Shimizu M; Sato R J Biol Chem; 2003 May; 278(19):16809-19. PubMed ID: 12615929 [TBL] [Abstract][Full Text] [Related]
46. Characterization of the C-terminal diglycine motif of SUMO-1/3. Yamada K; Muramatsu M; Saito D; Sato-Oka M; Saito M; Moriyama T; Saitoh H Biosci Biotechnol Biochem; 2012; 76(5):1035-7. PubMed ID: 22738983 [TBL] [Abstract][Full Text] [Related]
47. Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Ling Y; Sankpal UT; Robertson AK; McNally JG; Karpova T; Robertson KD Nucleic Acids Res; 2004; 32(2):598-610. PubMed ID: 14752048 [TBL] [Abstract][Full Text] [Related]
48. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation. Wiechmann S; Gärtner A; Kniss A; Stengl A; Behrends C; Rogov VV; Rodriguez MS; Dötsch V; Müller S; Ernst A J Biol Chem; 2017 Sep; 292(37):15340-15351. PubMed ID: 28784659 [TBL] [Abstract][Full Text] [Related]
49. Chip-based analysis of SUMO (small ubiquitin-like modifier) conjugation to a target protein. Oh YH; Hong MY; Jin Z; Lee T; Han MK; Park S; Kim HS Biosens Bioelectron; 2007 Feb; 22(7):1260-7. PubMed ID: 16820290 [TBL] [Abstract][Full Text] [Related]
50. Purification of SUMO Conjugates from Arabidopsis for Mass Spectrometry Analysis. Rytz TC; Miller MJ; Vierstra RD Methods Mol Biol; 2016; 1475():257-81. PubMed ID: 27631811 [TBL] [Abstract][Full Text] [Related]
51. The Ubiquitin-Like SUMO System and Heart Function: From Development to Disease. Mendler L; Braun T; Müller S Circ Res; 2016 Jan; 118(1):132-44. PubMed ID: 26837744 [TBL] [Abstract][Full Text] [Related]
52. Regulation of the Ets-1 transcription factor by sumoylation and ubiquitinylation. Ji Z; Degerny C; Vintonenko N; Deheuninck J; Foveau B; Leroy C; Coll J; Tulasne D; Baert JL; Fafeur V Oncogene; 2007 Jan; 26(3):395-406. PubMed ID: 16862185 [TBL] [Abstract][Full Text] [Related]
53. Methods to study SUMO dynamics in yeast. Pabst S; Döring LM; Petreska N; Dohmen RJ Methods Enzymol; 2019; 618():187-210. PubMed ID: 30850052 [TBL] [Abstract][Full Text] [Related]
54. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Endter C; Kzhyshkowska J; Stauber R; Dobner T Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11312-7. PubMed ID: 11553772 [TBL] [Abstract][Full Text] [Related]
55. Identification of Substrates of Protein-Group SUMOylation. Psakhye I; Jentsch S Methods Mol Biol; 2016; 1475():219-31. PubMed ID: 27631809 [TBL] [Abstract][Full Text] [Related]
56. Site-specific identification and quantitation of endogenous SUMO modifications under native conditions. Lumpkin RJ; Gu H; Zhu Y; Leonard M; Ahmad AS; Clauser KR; Meyer JG; Bennett EJ; Komives EA Nat Commun; 2017 Oct; 8(1):1171. PubMed ID: 29079793 [TBL] [Abstract][Full Text] [Related]
57. SUMO-1 modification of the C-terminal KVEKVD of Axin is required for JNK activation but has no effect on Wnt signaling. Rui HL; Fan E; Zhou HM; Xu Z; Zhang Y; Lin SC J Biol Chem; 2002 Nov; 277(45):42981-6. PubMed ID: 12223491 [TBL] [Abstract][Full Text] [Related]
58. Modification of Msx1 by SUMO-1. Gupta V; Bei M Biochem Biophys Res Commun; 2006 Jun; 345(1):74-7. PubMed ID: 16678795 [TBL] [Abstract][Full Text] [Related]
59. Regulation of DNA damage responses by ubiquitin and SUMO. Jackson SP; Durocher D Mol Cell; 2013 Mar; 49(5):795-807. PubMed ID: 23416108 [TBL] [Abstract][Full Text] [Related]
60. In vivo localization and identification of SUMOylated proteins in the brain of His6-HA-SUMO1 knock-in mice. Tirard M; Hsiao HH; Nikolov M; Urlaub H; Melchior F; Brose N Proc Natl Acad Sci U S A; 2012 Dec; 109(51):21122-7. PubMed ID: 23213215 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]