These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 15017137)

  • 1. Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.
    Bernadó P; Fernandes MX; Jacobs DM; Fiebig K; García de la Torre J; Pons M
    J Biomol NMR; 2004 May; 29(1):21-35. PubMed ID: 15017137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Sampling of Interdomain Motion Using Map-Restrained Langevin Dynamics and NMR: Application to Pin1.
    Bouchard JJ; Xia J; Case DA; Peng JW
    J Mol Biol; 2018 Jul; 430(14):2164-2180. PubMed ID: 29775635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling conformational ensembles of slow functional motions in Pin1-WW.
    Morcos F; Chatterjee S; McClendon CL; Brenner PR; López-Rendón R; Zintsmaster J; Ercsey-Ravasz M; Sweet CR; Jacobson MP; Peng JW; Izaguirre JA
    PLoS Comput Biol; 2010 Dec; 6(12):e1001015. PubMed ID: 21152000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate recognition reduces side-chain flexibility for conserved hydrophobic residues in human Pin1.
    Namanja AT; Peng T; Zintsmaster JS; Elson AC; Shakour MG; Peng JW
    Structure; 2007 Mar; 15(3):313-27. PubMed ID: 17355867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR relaxation unravels interdomain crosstalk of the two domain prolyl isomerase and chaperone SlyD.
    Kovermann M; Zierold R; Haupt C; Löw C; Balbach J
    Biochim Biophys Acta; 2011 Jul; 1814(7):873-81. PubMed ID: 21466862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and dynamics of pin1 during catalysis by NMR.
    Labeikovsky W; Eisenmesser EZ; Bosco DA; Kern D
    J Mol Biol; 2007 Apr; 367(5):1370-81. PubMed ID: 17316687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1.
    Kowalski JA; Liu K; Kelly JW
    Biopolymers; 2002 Feb; 63(2):111-21. PubMed ID: 11786999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterisation of PinA WW domain and a comparison with other group IV WW domains, Pin1 and Ess1.
    Ng CA; Kato Y; Tanokura M; Brownlee RT
    Biochim Biophys Acta; 2008 Sep; 1784(9):1208-14. PubMed ID: 18503784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Allostery Modulates Catalytic Activity by Modifying the Hydrogen Bonding Network in the Catalytic Site of Human Pin1.
    Wang J; Kawasaki R; Uewaki JI; Rashid AUR; Tochio N; Tate SI
    Molecules; 2017 Jun; 22(6):. PubMed ID: 28617332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational selection in the recognition of phosphorylated substrates by the catalytic domain of human Pin1.
    Velazquez HA; Hamelberg D
    Biochemistry; 2011 Nov; 50(44):9605-15. PubMed ID: 21967280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isotropic reorientational eigenmode dynamics complements NMR relaxation measurements for RNA.
    Showalter SA; Hall KB
    Methods Enzymol; 2005; 394():465-80. PubMed ID: 15808233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Analysis of the Pin1-CPEB1 interaction and its potential role in CPEB1 degradation.
    Schelhorn C; Martín-Malpartida P; Suñol D; Macias MJ
    Sci Rep; 2015 Oct; 5():14990. PubMed ID: 26456073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of ligand binding from 13C NMR relaxation dispersion at natural abundance.
    Zintsmaster JS; Wilson BD; Peng JW
    J Am Chem Soc; 2008 Oct; 130(43):14060-1. PubMed ID: 18834120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands.
    Matena A; Sinnen C; van den Boom J; Wilms C; Dybowski JN; Maltaner R; Mueller JW; Link NM; Hoffmann D; Bayer P
    Structure; 2013 Oct; 21(10):1769-77. PubMed ID: 23972472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of protein-protein interactions: structure-based discovery of low molecular weight inhibitors of the interactions between Pin1 WW domain and phosphopeptides.
    Smet C; Duckert JF; Wieruszeski JM; Landrieu I; Buée L; Lippens G; Déprez B
    J Med Chem; 2005 Jul; 48(15):4815-23. PubMed ID: 16033261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamically Driven Protein Allostery Exhibits Disparate Responses for Fast and Slow Motions.
    Guo J; Zhou HX
    Biophys J; 2015 Jun; 108(12):2771-4. PubMed ID: 26083915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitudes of protein backbone dynamics and correlated motions in a small alpha/beta protein: correspondence of dipolar coupling and heteronuclear relaxation measurements.
    Clore GM; Schwieters CD
    Biochemistry; 2004 Aug; 43(33):10678-91. PubMed ID: 15311929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic models and computational methods for NMR relaxation.
    García de la Torre J; Bernadó P; Pons M
    Methods Enzymol; 2005; 394():419-30. PubMed ID: 15808231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of PIN1 WW domain through a simple statistical mechanics model.
    Bruscolini P; Cecconi F
    Biophys Chem; 2005 Apr; 115(2-3):153-8. PubMed ID: 15752598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of pH in structural changes for Pin1 protein: an insight from molecular dynamics study.
    Wang Y; Xi L; Yao J; Yang J; Du LF
    J Mol Model; 2014 Aug; 20(8):2376. PubMed ID: 25031083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.