These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 15017358)
1. Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer. Zannis VI; Chroni A; Kypreos KE; Kan HY; Cesar TB; Zanni EE; Kardassis D Curr Opin Lipidol; 2004 Apr; 15(2):151-66. PubMed ID: 15017358 [TBL] [Abstract][Full Text] [Related]
2. Discrete roles of apoA-I and apoE in the biogenesis of HDL species: lessons learned from gene transfer studies in different mouse models. Zannis VI; Koukos G; Drosatos K; Vezeridis A; Zanni EE; Kypreos KE; Chroni A Ann Med; 2008; 40 Suppl 1():14-28. PubMed ID: 18246469 [TBL] [Abstract][Full Text] [Related]
3. The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo. Chroni A; Liu T; Gorshkova I; Kan HY; Uehara Y; Von Eckardstein A; Zannis VI J Biol Chem; 2003 Feb; 278(9):6719-30. PubMed ID: 12488454 [TBL] [Abstract][Full Text] [Related]
4. Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT. Kypreos KE; Zannis VI Biochem J; 2007 Apr; 403(2):359-67. PubMed ID: 17206937 [TBL] [Abstract][Full Text] [Related]
5. The carboxy-terminal region of apoA-I is required for the ABCA1-dependent formation of alpha-HDL but not prebeta-HDL particles in vivo. Chroni A; Koukos G; Duka A; Zannis VI Biochemistry; 2007 May; 46(19):5697-708. PubMed ID: 17447731 [TBL] [Abstract][Full Text] [Related]
6. Deletions of helices 2 and 3 of human apoA-I are associated with severe dyslipidemia following adenovirus-mediated gene transfer in apoA-I-deficient mice. Chroni A; Kan HY; Shkodrani A; Liu T; Zannis VI Biochemistry; 2005 Mar; 44(10):4108-17. PubMed ID: 15751988 [TBL] [Abstract][Full Text] [Related]
7. Apolipoprotein A-I-stimulated apolipoprotein E secretion from human macrophages is independent of cholesterol efflux. Kockx M; Rye KA; Gaus K; Quinn CM; Wright J; Sloane T; Sviridov D; Fu Y; Sullivan D; Burnett JR; Rust S; Assmann G; Anantharamaiah GM; Palgunachari MN; Katz SL; Phillips MC; Dean RT; Jessup W; Kritharides L J Biol Chem; 2004 Jun; 279(25):25966-77. PubMed ID: 15066991 [TBL] [Abstract][Full Text] [Related]
8. Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice. Chroni A; Kan HY; Kypreos KE; Gorshkova IN; Shkodrani A; Zannis VI Biochemistry; 2004 Aug; 43(32):10442-57. PubMed ID: 15301543 [TBL] [Abstract][Full Text] [Related]
9. Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT. Koukos G; Chroni A; Duka A; Kardassis D; Zannis VI Biochem J; 2007 Aug; 406(1):167-74. PubMed ID: 17506726 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanisms of type III hyperlipoproteinemia: The contribution of the carboxy-terminal domain of ApoE can account for the dyslipidemia that is associated with the E2/E2 phenotype. Kypreos KE; Li X; van Dijk KW; Havekes LM; Zannis VI Biochemistry; 2003 Aug; 42(33):9841-53. PubMed ID: 12924933 [TBL] [Abstract][Full Text] [Related]
11. Testing the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action of low-level apoE expression. Thorngate FE; Yancey PG; Kellner-Weibel G; Rudel LL; Rothblat GH; Williams DL J Lipid Res; 2003 Dec; 44(12):2331-8. PubMed ID: 12951361 [TBL] [Abstract][Full Text] [Related]
12. High density lipoprotein structure-function and role in reverse cholesterol transport. Lund-Katz S; Phillips MC Subcell Biochem; 2010; 51():183-227. PubMed ID: 20213545 [TBL] [Abstract][Full Text] [Related]
13. In vivo studies of HDL assembly and metabolism using adenovirus-mediated transfer of ApoA-I mutants in ApoA-I-deficient mice. Reardon CA; Kan HY; Cabana V; Blachowicz L; Lukens JR; Wu Q; Liadaki K; Getz GS; Zannis VI Biochemistry; 2001 Nov; 40(45):13670-80. PubMed ID: 11695916 [TBL] [Abstract][Full Text] [Related]
14. Residues Leu261, Trp264, and Phe265 account for apolipoprotein E-induced dyslipidemia and affect the formation of apolipoprotein E-containing high-density lipoprotein. Drosatos K; Kypreos KE; Zannis VI Biochemistry; 2007 Aug; 46(33):9645-53. PubMed ID: 17655277 [TBL] [Abstract][Full Text] [Related]
15. Domains of apoE4 required for the biogenesis of apoE-containing HDL. Vezeridis AM; Chroni A; Zannis VI Ann Med; 2011 Jun; 43(4):302-11. PubMed ID: 21604997 [TBL] [Abstract][Full Text] [Related]
16. Using adenovirus-mediated gene transfer to study the effect of myeloperoxidase on plasma lipid levels, HDL structure and functionality in mice expressing human apoA-I forms. Dalakoura-Karagkouni K; Tiniakou I; Zannis VI; Kardassis D Biochem Biophys Res Commun; 2022 Sep; 622():108-114. PubMed ID: 35843089 [TBL] [Abstract][Full Text] [Related]
17. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Joyce CW; Amar MJ; Lambert G; Vaisman BL; Paigen B; Najib-Fruchart J; Hoyt RF; Neufeld ED; Remaley AT; Fredrickson DS; Brewer HB; Santamarina-Fojo S Proc Natl Acad Sci U S A; 2002 Jan; 99(1):407-12. PubMed ID: 11752403 [TBL] [Abstract][Full Text] [Related]
18. Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I. Timmins JM; Lee JY; Boudyguina E; Kluckman KD; Brunham LR; Mulya A; Gebre AK; Coutinho JM; Colvin PL; Smith TL; Hayden MR; Maeda N; Parks JS J Clin Invest; 2005 May; 115(5):1333-42. PubMed ID: 15841208 [TBL] [Abstract][Full Text] [Related]
19. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. Zannis VI; Chroni A; Krieger M J Mol Med (Berl); 2006 Apr; 84(4):276-94. PubMed ID: 16501936 [TBL] [Abstract][Full Text] [Related]
20. The amino-terminal 1-185 domain of apoE promotes the clearance of lipoprotein remnants in vivo. The carboxy-terminal domain is required for induction of hyperlipidemia in normal and apoE-deficient mice. Kypreos KE; Morani P; van Dijk KW; Havekes LM; Zannis VI Biochemistry; 2001 May; 40(20):6027-35. PubMed ID: 11352738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]