BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 15018267)

  • 1. Predictions from the three-process model of alertness.
    Akerstedt T; Folkard S; Portin C
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A75-83. PubMed ID: 15018267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The three-process model of alertness and its extension to performance, sleep latency, and sleep length.
    Akerstedt T; Folkard S
    Chronobiol Int; 1997 Mar; 14(2):115-23. PubMed ID: 9095372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue and performance models: general background and commentary on the circadian alertness simulator for fatigue risk assessment in transportation.
    Dijk DJ; Larkin W
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A119-21. PubMed ID: 15018272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Commentary on the three-process model of alertness and broader modeling issues.
    Reifman J; Gander P
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A84-8; discussion A89. PubMed ID: 15018268
    [No Abstract]   [Full Text] [Related]  

  • 5. Critical research issues in development of biomathematical models of fatigue and performance.
    Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A181-91. PubMed ID: 15018283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The two-process model of sleep regulation revisited.
    Achermann P
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A37-43. PubMed ID: 15018264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating the homeostatic process to predict performance during chronic sleep restriction.
    Johnson ML; Belenky G; Redmond DP; Thorne DR; Williams JD; Hursh SR; Balkin TJ
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A141-6. PubMed ID: 15018276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Commentary on the interactive neurobehavioral model.
    Tepas DI; Samel A
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A90-2. PubMed ID: 15018269
    [No Abstract]   [Full Text] [Related]  

  • 10. Sleepiness, alertness and performance during a laboratory simulation of an acute shift of the wake-sleep cycle.
    Porcu S; Bellatreccia A; Ferrara M; Casagrande M
    Ergonomics; 1998 Aug; 41(8):1192-202. PubMed ID: 9715676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian alertness simulator for fatigue risk assessment in transportation: application to reduce frequency and severity of truck accidents.
    Moore-Ede M; Heitmann A; Guttkuhn R; Trutschel U; Aguirre A; Croke D
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A107-18. PubMed ID: 15018271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognition in circadian rhythm sleep disorders.
    Reid KJ; McGee-Koch LL; Zee PC
    Prog Brain Res; 2011; 190():3-20. PubMed ID: 21531242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shift work and inter-individual differences in sleep and sleepiness.
    Van Dongen HP
    Chronobiol Int; 2006; 23(6):1139-47. PubMed ID: 17190701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can a simple balance task be used to assess fitness for duty?
    Sargent C; Darwent D; Ferguson SA; Roach GD
    Accid Anal Prev; 2012 Mar; 45 Suppl():74-9. PubMed ID: 22239936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A controlled intervention study on the effects of a very rapidly forward rotating shift system on sleep-wakefulness and well-being among young and elderly shift workers.
    Härmä M; Tarja H; Irja K; Mikael S; Jussi V; Anne B; Pertti M
    Int J Psychophysiol; 2006 Jan; 59(1):70-9. PubMed ID: 16297476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting cognitive impairment and accident risk.
    Raslear TG; Hursh SR; Van Dongen HP
    Prog Brain Res; 2011; 190():155-67. PubMed ID: 21531251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SLEEP (Sleep Loss Effects On Everyday Performance) Model.
    Gregory JM; Xie X; Mengel SA
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A125-33. PubMed ID: 15018274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic and circadian aspects of sleep regulation in young poor sleepers.
    Benoit O; Aguirre A
    Neurophysiol Clin; 1996; 26(1):40-50. PubMed ID: 8657097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.