These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 15018584)
21. Aluminum determined in plasma and urine by atomic absorption spectroscopy with a transversely heated graphite atomizer furnace. Bradley C; Leung FY Clin Chem; 1994 Mar; 40(3):431-4. PubMed ID: 8131280 [TBL] [Abstract][Full Text] [Related]
22. [Determination of trace selenium in milk cow serum with graphite furnace atomic absorption spectrophotometry]. Dong YG; Shen HJ Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):691-2. PubMed ID: 12938403 [TBL] [Abstract][Full Text] [Related]
23. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Ozbek N; Akman S J Agric Food Chem; 2016 Jul; 64(28):5767-72. PubMed ID: 27345208 [TBL] [Abstract][Full Text] [Related]
24. Sensitive absorbance detection method for capillary electrophoresis based on laser wave-mixing. Wu Z; Tong WG J Chromatogr A; 1997 Jun; 773(1-2):291-8. PubMed ID: 9228800 [TBL] [Abstract][Full Text] [Related]
25. A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques. Gleisner H; Einax JW; Morés S; Welz B; Carasek E J Pharm Biomed Anal; 2011 Apr; 54(5):1040-6. PubMed ID: 21215545 [TBL] [Abstract][Full Text] [Related]
26. Lead screening in DBS by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: application to newborns and pregnant women. Rello L; Aramendía M; Belarra MA; Resano M Bioanalysis; 2015; 7(16):2057-70. PubMed ID: 26327185 [TBL] [Abstract][Full Text] [Related]
27. [Study on the determination method of Mo in the internal organs of body by graphite furnace atomic absorption spectrophotometry]. Mo S; Tang Y; Liang Y Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Apr; 19(2):200-2. PubMed ID: 15819007 [TBL] [Abstract][Full Text] [Related]
28. Element selective detection of molecular species applying chromatographic techniques and diode laser atomic absorption spectrometry. Kunze K; Zybin A; Koch J; Franzke J; Miclea M; Niemax K Spectrochim Acta A Mol Biomol Spectrosc; 2004 Dec; 60(14):3393-401. PubMed ID: 15561625 [TBL] [Abstract][Full Text] [Related]
30. Determination of lead in whole blood by graphite furnace atomic absorption spectrophotometry. Ealy JA; Bolton NE; McElheny RJ; Morrow RW Am Ind Hyg Assoc J; 1974 Sep; 35(9):566-70. PubMed ID: 4412758 [No Abstract] [Full Text] [Related]
31. Forward-scattering degenerate four-wave mixing as a simple sub-attomole-sensitive nonlinear laser analytical spectrometric method. Wu Z; Tong WG Anal Chem; 1993 Jan; 65(2):112-7. PubMed ID: 8430893 [TBL] [Abstract][Full Text] [Related]
32. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry. Bentlin FR; Pozebon D; Mello PA; Flores EM Anal Chim Acta; 2007 Oct; 602(1):23-31. PubMed ID: 17936103 [TBL] [Abstract][Full Text] [Related]
33. Determination of beryllium by electrothermal atomic absorption spectrometry using tungsten surfaces and zirconium modifier. Castro MA; Robles LC; Lumbreras JM; de Celis B; Aller AJ; Littlejohn D Anal Chim Acta; 2009 Mar; 636(2):158-62. PubMed ID: 19264163 [TBL] [Abstract][Full Text] [Related]
34. Feasibility of using solid sampling graphite furnace atomic absorption spectrometry for speciation analysis of volatile and non-volatile compounds of nickel and vanadium in crude oil. Silva MM; Damin IC; Vale MG; Welz B Talanta; 2007 Mar; 71(5):1877-85. PubMed ID: 19071537 [TBL] [Abstract][Full Text] [Related]
35. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection. Burguera-Pascu M; Rodríguez-Archilla A; Burguera JL; Burguera M; Rondón C; Carrero P Anal Chim Acta; 2007 Sep; 600(1-2):214-20. PubMed ID: 17903487 [TBL] [Abstract][Full Text] [Related]
36. Optimization of detection of atomic absorption lines in intracavity laser spectroscopy. Burakov VS; Misakov PY; Raikov SN Anal Bioanal Chem; 1996 Jul; 355(7-8):883-6. PubMed ID: 15045287 [TBL] [Abstract][Full Text] [Related]
37. Influence of experimental parameters on the determination of antimony in seawater by atomic absorption spectrometry using a transversely heated graphite furnace with Zeeman-effect background correction. Cabon JY Anal Bioanal Chem; 2002 Dec; 374(7-8):1282-9. PubMed ID: 12474098 [TBL] [Abstract][Full Text] [Related]
38. Dispersive liquid-liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry. Liang P; Zhao E; Li F Talanta; 2009 Mar; 77(5):1854-7. PubMed ID: 19159809 [TBL] [Abstract][Full Text] [Related]
39. [Determination of antimony from environmental air in the working area using flameless atomic absorption with a graphite furnace]. Carelli G; Rimatori V; Marsili R Ann Ist Super Sanita; 1977; 13(1-2):307-14. PubMed ID: 603128 [TBL] [Abstract][Full Text] [Related]
40. Feasibility of internal standardization in the direct and simultaneous determination of As, Cu and Pb in sugar-cane spirits by graphite furnace atomic absorption spectrometry. Caldas NM; Oliveira SR; Gomes Neto JA Anal Chim Acta; 2009 Mar; 636(1):1-5. PubMed ID: 19231348 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]