These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Instrumentation for simultaneous multielement atomic absorption spectrometry with graphite furnace atomization. Harnly JM Anal Bioanal Chem; 1996 Jun; 355(5-6):501-9. PubMed ID: 15045308 [TBL] [Abstract][Full Text] [Related]
43. Effect of the chemical species of arsenic on sensitivity in graphite furnace atomic absorption spectrometry. Narukawa T; Kuroiwa T; Narushima I; Chiba K Anal Sci; 2008 Mar; 24(3):355-60. PubMed ID: 18332542 [TBL] [Abstract][Full Text] [Related]
44. Determination of trace lead in water samples by continuous flow microextraction combined with graphite furnace atomic absorption spectrometry. Cao J; Liang P; Liu R J Hazard Mater; 2008 Apr; 152(3):910-4. PubMed ID: 17764833 [TBL] [Abstract][Full Text] [Related]
45. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry. Donati GL; Pharr KE; Calloway CP; Nóbrega JA; Jones BT Talanta; 2008 Sep; 76(5):1252-5. PubMed ID: 18761186 [TBL] [Abstract][Full Text] [Related]
46. Multiple mode semiconductor diode laser as a spectral line source for graphite furnace atomic absorption spectroscopy. Ng KC; Ali AH; Barber TE; Winefordner JD Anal Chem; 1990 Sep; 62(17):1893-5. PubMed ID: 2240574 [No Abstract] [Full Text] [Related]
47. [Preliminary study on using acousto-optic tunable filter as wavelength selector for atomic absorption spectrometry]. Zhao LW; Zhang YH; Wang MJ; Song DQ; Zhang HQ; Jin QH Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Jun; 22(3):472-5. PubMed ID: 12938338 [TBL] [Abstract][Full Text] [Related]
48. Method development for the determination of lead in wine using electrothermal atomic absorption spectrometry comparing platform and filter furnace atomizers and different chemical modifiers. Dessuy MB; Vale MG; Souza AS; Ferreira SL; Welz B; Katskov DA Talanta; 2008 Feb; 74(5):1321-9. PubMed ID: 18371785 [TBL] [Abstract][Full Text] [Related]
49. [Characterization of a method for the atomic absorption determination of blood lead using a graphite furnace and the L'vov platform]. Morisi G; Patriarca M; Macchia T Ann Ist Super Sanita; 1982; 18(3):587-90. PubMed ID: 7187847 [No Abstract] [Full Text] [Related]
50. Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Jiang H; Qin Y; Hu B Talanta; 2008 Feb; 74(5):1160-5. PubMed ID: 18371765 [TBL] [Abstract][Full Text] [Related]
51. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry. Salih B; Celikbiçak O; Döker S; Doğan M Anal Chim Acta; 2007 Mar; 587(2):272-80. PubMed ID: 17386783 [TBL] [Abstract][Full Text] [Related]
52. Liquid phase microextraction and ultratrace determination of cadmium by modified graphite furnace atomic absorption spectrometry. Nazari S J Hazard Mater; 2009 Jun; 165(1-3):200-5. PubMed ID: 19010596 [TBL] [Abstract][Full Text] [Related]
53. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions. Gómez-Nieto B; Gismera MJ; Sevilla MT; Satrústegui J; Procopio JR Talanta; 2017 Aug; 170():15-21. PubMed ID: 28501151 [TBL] [Abstract][Full Text] [Related]
54. [Zeeman graphite furnace atomic absorption spectrophotometric determination of urine vanadium]. Shen YQ; Li PJ; Zheng LX Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2008 Sep; 26(9):569-70. PubMed ID: 19309594 [No Abstract] [Full Text] [Related]
55. Selective determination of ultra trace amounts of gold by graphite furnace atomic absorption spectrometry after dispersive liquid-liquid microextraction. Shamsipur M; Ramezani M Talanta; 2008 Mar; 75(1):294-300. PubMed ID: 18371881 [TBL] [Abstract][Full Text] [Related]
56. Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: study of preconcentration technique performance. Tsogas GZ; Giokas DL; Vlessidis AG J Hazard Mater; 2009 Apr; 163(2-3):988-94. PubMed ID: 18762379 [TBL] [Abstract][Full Text] [Related]
57. Determination of traces of rubidium in high purity cesium chloride by electrothermal atomic absorption spectrometry (ETAAS) using boric acid as a modifier. Dash K; Thangavel S; Chaurasia SC; Arunachalam J Anal Chim Acta; 2007 Feb; 584(1):210-4. PubMed ID: 17386606 [TBL] [Abstract][Full Text] [Related]
58. Evaluation of a tungsten coil atomization-laser-induced fluorescence detection approach for trace elemental analysis. Ezer M; Elwood SA; Jones BT; Simeonsson JB Anal Chim Acta; 2006 Jun; 571(1):136-41. PubMed ID: 17723431 [TBL] [Abstract][Full Text] [Related]
59. Comparative measurement of gas temperature in a graphite atomizer by a two-line method of iron and nickel spectral lines in graphite furnace atomic absorption spectrometry. Ashino T; Morimoto S; Wagatsuma K Anal Sci; 2010; 26(12):1301-4. PubMed ID: 21157101 [TBL] [Abstract][Full Text] [Related]
60. Cloud point extraction and graphite furnace atomic absorption spectrometry determination of manganese(II) and iron(III) in water samples. Liang P; Sang H; Sun Z J Colloid Interface Sci; 2006 Dec; 304(2):486-90. PubMed ID: 17010364 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]