These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
85 related articles for article (PubMed ID: 15018827)
1. Investigation of a new input function validation approach for dynamic mouse microPET studies. Huang SC; Wu HM; Shoghi-Jadid K; Stout DB; Chatziioannou A; Schelbert HR; Barrio JR Mol Imaging Biol; 2004; 6(1):34-46. PubMed ID: 15018827 [TBL] [Abstract][Full Text] [Related]
2. Measurement of input functions in rodents: challenges and solutions. Laforest R; Sharp TL; Engelbach JA; Fettig NM; Herrero P; Kim J; Lewis JS; Rowland DJ; Tai YC; Welch MJ Nucl Med Biol; 2005 Oct; 32(7):679-85. PubMed ID: 16243642 [TBL] [Abstract][Full Text] [Related]
3. Quantification method in [18F]fluorodeoxyglucose brain positron emission tomography using independent component analysis. Su KH; Wu LC; Liu RS; Wang SJ; Chen JC Nucl Med Commun; 2005 Nov; 26(11):995-1004. PubMed ID: 16208178 [TBL] [Abstract][Full Text] [Related]
4. Minimally invasive method of determining blood input function from PET images in rodents. Kim J; Herrero P; Sharp T; Laforest R; Rowland DJ; Tai YC; Lewis JS; Welch MJ J Nucl Med; 2006 Feb; 47(2):330-6. PubMed ID: 16455640 [TBL] [Abstract][Full Text] [Related]
5. Estimating the input function non-invasively for FDG-PET quantification with multiple linear regression analysis: simulation and verification with in vivo data. Fang YH; Kao T; Liu RS; Wu LC Eur J Nucl Med Mol Imaging; 2004 May; 31(5):692-702. PubMed ID: 14740178 [TBL] [Abstract][Full Text] [Related]
6. An input function estimation method for FDG-PET human brain studies. Guo H; Renaut RA; Chen K Nucl Med Biol; 2007 Jul; 34(5):483-92. PubMed ID: 17591548 [TBL] [Abstract][Full Text] [Related]
7. Hybrid image and blood sampling input function for quantification of small animal dynamic PET data. Shoghi KI; Welch MJ Nucl Med Biol; 2007 Nov; 34(8):989-94. PubMed ID: 17998103 [TBL] [Abstract][Full Text] [Related]
8. In vivo quantitation of glucose metabolism in mice using small-animal PET and a microfluidic device. Wu HM; Sui G; Lee CC; Prins ML; Ladno W; Lin HD; Yu AS; Phelps ME; Huang SC J Nucl Med; 2007 May; 48(5):837-45. PubMed ID: 17475972 [TBL] [Abstract][Full Text] [Related]
9. A method of generating image-derived input function in a quantitative ¹⁸F-FDG PET study based on the shape of the input function curve. Zhou S; Chen K; Reiman EM; Li DM; Shan B Nucl Med Commun; 2011 Dec; 32(12):1121-7. PubMed ID: 21946619 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images. Chen K; Chen X; Renaut R; Alexander GE; Bandy D; Guo H; Reiman EM Phys Med Biol; 2007 Dec; 52(23):7055-71. PubMed ID: 18029993 [TBL] [Abstract][Full Text] [Related]
11. Extraction of a plasma time-activity curve from dynamic brain PET images based on independent component analysis. Naganawa M; Kimura Y; Ishii K; Oda K; Ishiwata K; Matani A IEEE Trans Biomed Eng; 2005 Feb; 52(2):201-10. PubMed ID: 15709657 [TBL] [Abstract][Full Text] [Related]
12. Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice. Lanz B; Poitry-Yamate C; Gruetter R J Nucl Med; 2014 Aug; 55(8):1380-8. PubMed ID: 24914058 [TBL] [Abstract][Full Text] [Related]
13. A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. Green LA; Nguyen K; Berenji B; Iyer M; Bauer E; Barrio JR; Namavari M; Satyamurthy N; Gambhir SS J Nucl Med; 2004 Sep; 45(9):1560-70. PubMed ID: 15347725 [TBL] [Abstract][Full Text] [Related]
14. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. Chen K; Bandy D; Reiman E; Huang SC; Lawson M; Feng D; Yun LS; Palant A J Cereb Blood Flow Metab; 1998 Jul; 18(7):716-23. PubMed ID: 9663501 [TBL] [Abstract][Full Text] [Related]
15. Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. Fang YH; Muzic RF J Nucl Med; 2008 Apr; 49(4):606-14. PubMed ID: 18344438 [TBL] [Abstract][Full Text] [Related]
16. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. Munk OL; Bass L; Roelsgaard K; Bender D; Hansen SB; Keiding S J Nucl Med; 2001 May; 42(5):795-801. PubMed ID: 11337579 [TBL] [Abstract][Full Text] [Related]
18. On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Hoekstra CJ; Hoekstra OS; Lammertsma AA Eur J Nucl Med; 1999 Nov; 26(11):1489-92. PubMed ID: 10552093 [TBL] [Abstract][Full Text] [Related]
19. Simplified [18F]FDG image-derived input function using the left ventricle, liver, and one venous blood sample. Tantawy MN; Peterson TE Mol Imaging; 2010 Apr; 9(2):76-86. PubMed ID: 20236605 [TBL] [Abstract][Full Text] [Related]
20. Shortened PET data acquisition protocol for the quantification of 18F-FDG kinetics. Strauss LG; Dimitrakopoulou-Strauss A; Haberkorn U J Nucl Med; 2003 Dec; 44(12):1933-9. PubMed ID: 14660719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]