BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 15018971)

  • 1. Development of acrylic-based copolymers for oral insulin delivery.
    Foss AC; Goto T; Morishita M; Peppas NA
    Eur J Pharm Biopharm; 2004 Mar; 57(2):163-9. PubMed ID: 15018971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery.
    Kumar A; Lahiri SS; Singh H
    Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the cytotoxicity and insulin transport of acrylic-based copolymer protein delivery systems in contact with Caco-2 cultures.
    Foss AC; Peppas NA
    Eur J Pharm Biopharm; 2004 May; 57(3):447-55. PubMed ID: 15093592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel polyelectrolyte complexes based on poly(methacrylic acid)-bis(2-aminopropyl)poly(ethylene glycol) for oral protein delivery.
    Sajeesh S; Sharma CP
    J Biomater Sci Polym Ed; 2007; 18(9):1125-39. PubMed ID: 17931503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids.
    Perakslis E; Tuesca A; Lowman A
    J Biomater Sci Polym Ed; 2007; 18(12):1475-90. PubMed ID: 17988515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Devices based on intelligent biopolymers for oral protein delivery.
    Peppas NA
    Int J Pharm; 2004 Jun; 277(1-2):11-7. PubMed ID: 15158964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Starch-based polymeric carriers for oral-insulin delivery.
    Mahkam M
    J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled release of insulin from pH/temperature-sensitive injectable pentablock copolymer hydrogel.
    Huynh DP; Im GJ; Chae SY; Lee KC; Lee DS
    J Control Release; 2009 Jul; 137(1):20-4. PubMed ID: 19285530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pluronic block copolymers and Pluronic poly(acrylic acid) microgels in oral delivery of megestrol acetate.
    Alakhov V; Pietrzynski G; Patel K; Kabanov A; Bromberg L; Hatton TA
    J Pharm Pharmacol; 2004 Oct; 56(10):1233-41. PubMed ID: 15482637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loading and mobility of spin-labeled insulin in physiologically responsive complexation hydrogels intended for oral administration.
    Besheer A; Wood KM; Peppas NA; Mäder K
    J Control Release; 2006 Mar; 111(1-2):73-80. PubMed ID: 16460830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.
    Nakamura K; Murray RJ; Joseph JI; Peppas NA; Morishita M; Lowman AM
    J Control Release; 2004 Mar; 95(3):589-99. PubMed ID: 15023469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.
    Sajeesh S; Sharma CP
    Int J Pharm; 2006 Nov; 325(1-2):147-54. PubMed ID: 16859846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-induced release of glycosylpoly(ethylene glycol) insulin bound to a soluble conjugate of concanavalin A.
    Liu F; Song SC; Mix D; Baudys M; Kim SW
    Bioconjug Chem; 1997; 8(5):664-72. PubMed ID: 9327129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin.
    Damgé C; Vranckx H; Balschmidt P; Couvreur P
    J Pharm Sci; 1997 Dec; 86(12):1403-9. PubMed ID: 9423155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodistribution, pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral delivery using pH-responsive nanoparticles vs. subcutaneous injection.
    Sonaje K; Lin KJ; Wey SP; Lin CK; Yeh TH; Nguyen HN; Hsu CW; Yen TC; Juang JH; Sung HW
    Biomaterials; 2010 Sep; 31(26):6849-58. PubMed ID: 20619787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone.
    Ould-Ouali L; Noppe M; Langlois X; Willems B; Te Riele P; Timmerman P; Brewster ME; Ariën A; Préat V
    J Control Release; 2005 Feb; 102(3):657-68. PubMed ID: 15681087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies.
    Sant VP; Smith D; Leroux JC
    J Control Release; 2005 May; 104(2):289-300. PubMed ID: 15907580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery.
    Mundargi RC; Rangaswamy V; Aminabhavi TM
    J Microencapsul; 2011; 28(5):384-94. PubMed ID: 21736523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized injectable hydrogels for controlled insulin delivery.
    Huynh DP; Nguyen MK; Pi BS; Kim MS; Chae SY; Lee KC; Kim BS; Kim SW; Lee DS
    Biomaterials; 2008 Jun; 29(16):2527-34. PubMed ID: 18329707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs.
    Park EK; Lee SB; Lee YM
    Biomaterials; 2005 Mar; 26(9):1053-61. PubMed ID: 15369694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.