BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 15019200)

  • 21. The role of the central L- or D-Pro residue on structure and mode of action of a cell-selective alpha-helical IsCT-derived antimicrobial peptide.
    Lim SS; Kim Y; Park Y; Kim JI; Park IS; Hahm KS; Shin SY
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1329-35. PubMed ID: 16040002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues.
    Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY
    Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parallel and antiparallel dimers of magainin 2: their interaction with phospholipid membrane and antibacterial activity.
    Mukai Y; Matsushita Y; Niidome T; Hatekeyama T; Aoyag H
    J Pept Sci; 2002 Oct; 8(10):570-7. PubMed ID: 12450326
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides.
    Malanovic N; Lohner K
    Biochim Biophys Acta; 2016 May; 1858(5):936-46. PubMed ID: 26577273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface plasmon resonance spectroscopy for studying the membrane binding of antimicrobial peptides.
    Hall K; Aguilar MI
    Methods Mol Biol; 2010; 627():213-23. PubMed ID: 20217624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide.
    Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY
    Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifunctional host defense peptides: intracellular-targeting antimicrobial peptides.
    Nicolas P
    FEBS J; 2009 Nov; 276(22):6483-96. PubMed ID: 19817856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mode of action of membrane active antimicrobial peptides.
    Shai Y
    Biopolymers; 2002; 66(4):236-48. PubMed ID: 12491537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cationic amphiphilic peptides with cancer-selective toxicity.
    Schweizer F
    Eur J Pharmacol; 2009 Dec; 625(1-3):190-4. PubMed ID: 19835863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apidaecin-type peptides: biodiversity, structure-function relationships and mode of action.
    Li WF; Ma GX; Zhou XX
    Peptides; 2006 Sep; 27(9):2350-9. PubMed ID: 16675061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions of mast cell degranulating peptides with model membranes: a comparative biophysical study.
    Dos Santos Cabrera MP; Arcisio-Miranda M; da Costa LC; de Souza BM; Broggio Costa ST; Palma MS; Ruggiero Neto J; Procopio J
    Arch Biochem Biophys; 2009 Jun; 486(1):1-11. PubMed ID: 19328184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design of potent 9-mer antimicrobial peptide analogs of protaetiamycine and investigation of mechanism of antimicrobial action.
    Shin S; Kim JK; Lee JY; Jung KW; Hwang JS; Lee J; Lee DG; Kim I; Shin SY; Kim Y
    J Pept Sci; 2009 Sep; 15(9):559-68. PubMed ID: 19598182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial membrane lipids in the action of antimicrobial agents.
    Epand RM; Epand RF
    J Pept Sci; 2011 May; 17(5):298-305. PubMed ID: 21480436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces.
    Clayton JC; Hughes E; Middleton DA
    Biochemistry; 2005 Dec; 44(51):17016-26. PubMed ID: 16363815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mimicking and Understanding the Agglutination Effect of the Antimicrobial Peptide Thanatin Using Model Phospholipid Vesicles.
    Robert É; Lefèvre T; Fillion M; Martial B; Dionne J; Auger M
    Biochemistry; 2015 Jun; 54(25):3932-41. PubMed ID: 26057537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell selectivity and mechanism of action of short antimicrobial peptides designed from the cell-penetrating peptide Pep-1.
    Zhu WL; Hahm KS; Shin SY
    J Pept Sci; 2009 Sep; 15(9):569-75. PubMed ID: 19455552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advances in antimicrobial peptide immunobiology.
    Yount NY; Bayer AS; Xiong YQ; Yeaman MR
    Biopolymers; 2006; 84(5):435-58. PubMed ID: 16736494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions.
    Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P
    Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interaction of antimicrobial peptides with membranes.
    Travkova OG; Moehwald H; Brezesinski G
    Adv Colloid Interface Sci; 2017 Sep; 247():521-532. PubMed ID: 28606715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.