BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15019492)

  • 41. Sox15 is required for skeletal muscle regeneration.
    Lee HJ; Göring W; Ochs M; Mühlfeld C; Steding G; Paprotta I; Engel W; Adham IM
    Mol Cell Biol; 2004 Oct; 24(19):8428-36. PubMed ID: 15367664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prolonged absence of myostatin reduces sarcopenia.
    Siriett V; Platt L; Salerno MS; Ling N; Kambadur R; Sharma M
    J Cell Physiol; 2006 Dec; 209(3):866-73. PubMed ID: 16972257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Muscle satellite cell and atypical myogenic progenitor response following exercise.
    Parise G; McKinnell IW; Rudnicki MA
    Muscle Nerve; 2008 May; 37(5):611-9. PubMed ID: 18351585
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pathological changes induced by an acidic phospholipase A2 from Ophiophagus hannah venom on heart and skeletal muscle of mice after systemic injection.
    Huang MZ; Gopalakrishnakone P
    Toxicon; 1996 Feb; 34(2):201-11. PubMed ID: 8711754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Induction of Acute Skeletal Muscle Regeneration by Cardiotoxin Injection.
    Guardiola O; Andolfi G; Tirone M; Iavarone F; Brunelli S; Minchiotti G
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117768
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reversible skeletal neuromuscular paralysis induced by different lysophospholipids.
    Caccin P; Rigoni M; Bisceglie A; Rossetto O; Montecucco C
    FEBS Lett; 2006 Nov; 580(27):6317-21. PubMed ID: 17083939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Muscle necrosis caused by snake venoms and toxins.
    Harris JB; Cullen MJ
    Electron Microsc Rev; 1990; 3(2):183-211. PubMed ID: 2103341
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Myotoxic components of snake venoms: their biochemical and biological activities.
    Mebs D; Ownby CL
    Pharmacol Ther; 1990; 48(2):223-36. PubMed ID: 2293240
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biotoxins in muscle regeneration research.
    Mahdy MAA
    J Muscle Res Cell Motil; 2019 Dec; 40(3-4):291-297. PubMed ID: 31359301
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mouse muscle regeneration: an in vivo 2D 1H magnetic resonance spectroscopy (MRS) study.
    Sébrié ; Gillet B; Lefaucheur JP; Sébille A; Beloeil JC
    FEBS Lett; 1998 Feb; 423(1):71-4. PubMed ID: 9506844
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Diversity of Muscles and Their Regenerative Potential across Animals.
    Zullo L; Bozzo M; Daya A; Di Clemente A; Mancini FP; Megighian A; Nesher N; Röttinger E; Shomrat T; Tiozzo S; Zullo A; Candiani S
    Cells; 2020 Aug; 9(9):. PubMed ID: 32825163
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The influence of tension and innervation on the regeneration of skeletal muscle.
    DENNY-BROWN D
    J Neuropathol Exp Neurol; 1951 Jan; 10(1):94-6. PubMed ID: 14804138
    [No Abstract]   [Full Text] [Related]  

  • 54. Regulation of skeletal muscle size, regeneration and repair.
    Esser K
    J Musculoskelet Neuronal Interact; 2008; 8(4):335-6. PubMed ID: 19147964
    [No Abstract]   [Full Text] [Related]  

  • 55. Skeletal muscles do more than the loco-motion.
    Groeneveld K
    Acta Physiol (Oxf); 2022 Mar; 234(3):e13791. PubMed ID: 35094479
    [No Abstract]   [Full Text] [Related]  

  • 56. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration.
    Egerman MA; Cadena SM; Gilbert JA; Meyer A; Nelson HN; Swalley SE; Mallozzi C; Jacobi C; Jennings LL; Clay I; Laurent G; Ma S; Brachat S; Lach-Trifilieff E; Shavlakadze T; Trendelenburg AU; Brack AS; Glass DJ
    Cell Metab; 2015 Jul; 22(1):164-74. PubMed ID: 26001423
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Post-transcriptional regulation of satellite cell quiescence by TTP-mediated mRNA decay.
    Hausburg MA; Doles JD; Clement SL; Cadwallader AB; Hall MN; Blackshear PJ; Lykke-Andersen J; Olwin BB
    Elife; 2015 Mar; 4():e03390. PubMed ID: 25815583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules.
    Crist CG; Montarras D; Buckingham M
    Cell Stem Cell; 2012 Jul; 11(1):118-26. PubMed ID: 22770245
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair.
    Lu H; Huang D; Ransohoff RM; Zhou L
    FASEB J; 2011 Oct; 25(10):3344-55. PubMed ID: 21697550
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study.
    Summan M; Warren GL; Mercer RR; Chapman R; Hulderman T; Van Rooijen N; Simeonova PP
    Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1488-95. PubMed ID: 16424086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.