These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15019563)

  • 41. Studies of the central neural pathways to the stomach and Zusanli (ST36).
    Lee CH; Jung HS; Lee TY; Lee SR; Yuk SW; Lee KG; Lee BH
    Am J Chin Med; 2001; 29(2):211-20. PubMed ID: 11527064
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dorsal motor nucleus of the vagus neurons: a multivariate taxonomy.
    Jarvinen MK; Powley TL
    J Comp Neurol; 1999 Jan; 403(3):359-77. PubMed ID: 9886036
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Substance P effects on the dorsal motor nucleus of the vagus.
    Plata-Salaman CR; Fukuda A; Minami T; Oomura Y
    Brain Res Bull; 1989; 23(1-2):149-53. PubMed ID: 2478263
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices.
    Weiss T; Veh RW
    Neuroscience; 2011 Jan; 172():74-93. PubMed ID: 20974229
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Differences in electrophysiological properties between neurones of the dorsal motor nucleus of the vagus in rat and guinea pig.
    Sah P; McLachlan EM
    J Auton Nerv Syst; 1993 Feb; 42(2):89-98. PubMed ID: 8450177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Whole-cell patch-clamp recordings from visualized bulbospinal neurons in the brainstem slices.
    Kangrga IM; Loewy AD
    Brain Res; 1994 Apr; 641(2):181-90. PubMed ID: 7516811
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of vagal afferent projections circumflex to the obex in the embryonic chick brainstem visualized with voltage-sensitive dye recording.
    Momose-Sato Y; Kinoshita M; Sato K
    Neuroscience; 2007 Aug; 148(1):140-50. PubMed ID: 17629626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat.
    McLean JH; Hopkins DA
    J Comp Neurol; 1981 Jan; 195(1):157-75. PubMed ID: 7204650
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitric oxide inhibits spinally projecting paraventricular neurons through potentiation of presynaptic GABA release.
    Li DP; Chen SR; Pan HL
    J Neurophysiol; 2002 Nov; 88(5):2664-74. PubMed ID: 12424302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mu-opioid receptor trafficking on inhibitory synapses in the rat brainstem.
    Browning KN; Kalyuzhny AE; Travagli RA
    J Neurosci; 2004 Aug; 24(33):7344-52. PubMed ID: 15317860
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vagal neurons and pathways to the rat's lower viscera: an electrophysiological study.
    Sauter JF; Niijima A; Berthoud HR; Jeanrenaud B
    Brain Res Bull; 1983 Nov; 11(5):487-91. PubMed ID: 6667379
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ethanol inhibits pancreatic projecting neurons in the dorsal motor nucleus of the vagus.
    Keller BN; Randall PA; Arnold AC; Browning KN; Silberman Y
    Brain Res Bull; 2022 Oct; 189():121-129. PubMed ID: 35998791
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Colocalization of GABA(A) and NMDA receptors within the dorsal motor nucleus of the vagus nerve (DMV) of the rat.
    Broussard DL; Li H; Altschuler SM
    Brain Res; 1997 Jul; 763(1):123-6. PubMed ID: 9272836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical detection of embryogenetic expression of vagal excitability in the rat brain stem.
    Sato K; Yazawa I; Mochida H; Sasaki S; Kamino K; Momose-Sato Y
    Neuroreport; 2000 Nov; 11(17):3759-63. PubMed ID: 11117486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rhythmic activities in the rat solitary complex in vitro.
    Fortin G; Branchereau P; Araneda S; Champagnat J
    Neurosci Lett; 1992 Sep; 145(1):23-7. PubMed ID: 1461562
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Central Neurocircuits Regulating Food Intake in Response to Gut Inputs-Preclinical Evidence.
    Browning KN; Carson KE
    Nutrients; 2021 Mar; 13(3):. PubMed ID: 33799575
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the Basic Membrane Properties of Neurons of the Rat Dorsal Motor Nucleus of the Vagus in Paraquat-Induced Models of Parkinsonism.
    Bove C; Coleman FH; Travagli RA
    Neuroscience; 2019 Oct; 418():122-132. PubMed ID: 31491501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity.
    Bhagat R; Fortna SR; Browning KN
    J Physiol; 2015 Jan; 593(1):285-303. PubMed ID: 25556801
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions.
    Browning KN; Travagli RA
    Compr Physiol; 2014 Oct; 4(4):1339-68. PubMed ID: 25428846
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of gastrointestinal vagal neurocircuits by hyperglycemia.
    Browning KN
    Front Neurosci; 2013; 7():217. PubMed ID: 24324393
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.