BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15019620)

  • 81. Phylogeny vs genome reshuffling: horizontal gene transfer.
    Lal S; Cheema S; Kalia VC
    Indian J Microbiol; 2008 Jun; 48(2):228-42. PubMed ID: 23100716
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Phylophenetic properties of metabolic pathway topologies as revealed by global analysis.
    Zhang Y; Li S; Skogerbø G; Zhang Z; Zhu X; Zhang Z; Sun S; Lu H; Shi B; Chen R
    BMC Bioinformatics; 2006 May; 7():252. PubMed ID: 16684350
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Reconstructing Phylogeny by Aligning Multiple Metabolic Pathways Using Functional Module Mapping.
    Huang Y; Zhong C; Lin HX; Wang J; Peng Y
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29473850
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Convergent evolution of modularity in metabolic networks through different community structures.
    Zhou W; Nakhleh L
    BMC Evol Biol; 2012 Sep; 12():181. PubMed ID: 22974099
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Carl Woese's vision of cellular evolution and the domains of life.
    Koonin EV
    RNA Biol; 2014; 11(3):197-204. PubMed ID: 24572480
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Large-scale reconstruction and phylogenetic analysis of metabolic environments.
    Borenstein E; Kupiec M; Feldman MW; Ruppin E
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14482-7. PubMed ID: 18787117
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Evolutionary Aspects of Selenium Binding Protein (SBP).
    Dervisi I; Valassakis C; Koletti A; Kouvelis VN; Flemetakis E; Ouzounis CA; Roussis A
    J Mol Evol; 2023 Aug; 91(4):471-481. PubMed ID: 37039856
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The phylogenetic extent of metabolic enzymes and pathways.
    Peregrin-Alvarez JM; Tsoka S; Ouzounis CA
    Genome Res; 2003 Mar; 13(3):422-7. PubMed ID: 12618373
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Selection of organisms for the co-evolution-based study of protein interactions.
    Herman D; Ochoa D; Juan D; Lopez D; Valencia A; Pazos F
    BMC Bioinformatics; 2011 Sep; 12():363. PubMed ID: 21910884
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Saccharomyces cerevisiae as a model organism: a comparative study.
    Karathia H; Vilaprinyo E; Sorribas A; Alves R
    PLoS One; 2011 Feb; 6(2):e16015. PubMed ID: 21311596
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.
    Braakman R; Smith E
    PLoS One; 2014; 9(2):e87950. PubMed ID: 24516572
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An Unsupervised Classifier for Whole-Genome Phylogenies, the Maxwell© Tool.
    Gardes J; Maldivi C; Boisset D; Aubourg T; Demongeot J
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003468
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Comparative classification of species and the study of pathway evolution based on the alignment of metabolic pathways.
    Mano A; Tuller T; Béjà O; Pinter RY
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S38. PubMed ID: 20122211
    [TBL] [Abstract][Full Text] [Related]  

  • 94. MediaDB: a database of microbial growth conditions in defined media.
    Richards MA; Cassen V; Heavner BD; Ajami NE; Herrmann A; Simeonidis E; Price ND
    PLoS One; 2014; 9(8):e103548. PubMed ID: 25098325
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Phylogeny-driven target selection for large-scale genome-sequencing (and other) projects.
    Göker M; Klenk HP
    Stand Genomic Sci; 2013; 8(2):360-74. PubMed ID: 23991265
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Identifying metabolic enzymes with multiple types of association evidence.
    Kharchenko P; Chen L; Freund Y; Vitkup D; Church GM
    BMC Bioinformatics; 2006 Mar; 7():177. PubMed ID: 16571130
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Reconstruction of phyletic trees by global alignment of multiple metabolic networks.
    Ma CY; Lin SH; Lee CC; Tang CY; Berger B; Liao CS
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S12. PubMed ID: 23368411
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The divergence and natural selection of autocatalytic primordial metabolic systems.
    Marakushev SA; Belonogova OV
    Orig Life Evol Biosph; 2013 Jun; 43(3):263-81. PubMed ID: 23860777
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Functional classification of genome-scale metabolic networks.
    Ebenhöh O; Handorf T
    EURASIP J Bioinform Syst Biol; 2009; 2009(1):570456. PubMed ID: 19300528
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Limited influence of oxygen on the evolution of chemical diversity in metabolic networks.
    Takemoto K; Yoshitake I
    Metabolites; 2013 Oct; 3(4):979-92. PubMed ID: 24958261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.