BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15019705)

  • 41. Apolipoprotein E and apolipoprotein E messenger RNA in muscle of inclusion body myositis and myopathies.
    Mirabella M; Alvarez RB; Engel WK; Weisgraber KH; Askanas V
    Ann Neurol; 1996 Dec; 40(6):864-72. PubMed ID: 9007091
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stromal cell-derived factor-1 enhances motility and integrin up-regulation through CXCR4, ERK and NF-kappaB-dependent pathway in human lung cancer cells.
    Huang YC; Hsiao YC; Chen YJ; Wei YY; Lai TH; Tang CH
    Biochem Pharmacol; 2007 Dec; 74(12):1702-12. PubMed ID: 17904532
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Syndecan-4 is a signaling molecule for stromal cell-derived factor-1 (SDF-1)/ CXCL12.
    Charnaux N; Brule S; Hamon M; Chaigneau T; Saffar L; Prost C; Lievre N; Gattegno L
    FEBS J; 2005 Apr; 272(8):1937-51. PubMed ID: 15819887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium.
    Ao M; Franco OE; Park D; Raman D; Williams K; Hayward SW
    Cancer Res; 2007 May; 67(9):4244-53. PubMed ID: 17483336
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Involvement of matrix metalloproteinase-9 in stromal cell-derived factor-1/CXCR4 pathway of lung cancer metastasis.
    Tang CH; Tan TW; Fu WM; Yang RS
    Carcinogenesis; 2008 Jan; 29(1):35-43. PubMed ID: 17916907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CXCR4 and SDF1 expression in human meningiomas: a proliferative role in tumoral meningothelial cells in vitro.
    Bajetto A; Barbieri F; Pattarozzi A; Dorcaratto A; Porcile C; Ravetti JL; Zona G; Spaziante R; Schettini G; Florio T
    Neuro Oncol; 2007 Jan; 9(1):3-11. PubMed ID: 17108064
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemokine receptors are expressed widely by embryonic and adult neural progenitor cells.
    Tran PB; Ren D; Veldhouse TJ; Miller RJ
    J Neurosci Res; 2004 Apr; 76(1):20-34. PubMed ID: 15048927
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1-CXCR4 pathway in the aggressiveness of breast cancer cells.
    Kang H; Mansel RE; Jiang WG
    Int J Oncol; 2005 May; 26(5):1429-34. PubMed ID: 15809737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis.
    Kucia M; Reca R; Miekus K; Wanzeck J; Wojakowski W; Janowska-Wieczorek A; Ratajczak J; Ratajczak MZ
    Stem Cells; 2005 Aug; 23(7):879-94. PubMed ID: 15888687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Expression of adhesion molecules in idiopathic inflammatory myopathies. Immunohistochemical study of 17 cases].
    Liprandi A; Figarella-Branger D; Daniel L; Lepidi H; Bartoli C; Pellissier JF
    Ann Pathol; 1999 Mar; 19(1):12-8. PubMed ID: 10320905
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Solution studies of recombinant human stromal-cell-derived factor-1.
    Holmes WD; Consler TG; Dallas WS; Rocque WJ; Willard DH
    Protein Expr Purif; 2001 Apr; 21(3):367-77. PubMed ID: 11281710
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia.
    Stumm RK; Rummel J; Junker V; Culmsee C; Pfeiffer M; Krieglstein J; Höllt V; Schulz S
    J Neurosci; 2002 Jul; 22(14):5865-78. PubMed ID: 12122049
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Increased expression of beta-chemokines in muscle of patients with inflammatory myopathies.
    Confalonieri P; Bernasconi P; Megna P; Galbiati S; Cornelio F; Mantegazza R
    J Neuropathol Exp Neurol; 2000 Feb; 59(2):164-9. PubMed ID: 10749105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distribution of the NF-kappaB complex in the inflammatory exudates characterizing the idiopathic inflammatory myopathies.
    Creus KK; De Paepe B; Werbrouck BF; Vervaet V; Weis J; De Bleecker JL
    Ann N Y Acad Sci; 2009 Sep; 1173():370-7. PubMed ID: 19758175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies.
    Lundberg I; Ulfgren AK; Nyberg P; Andersson U; Klareskog L
    Arthritis Rheum; 1997 May; 40(5):865-74. PubMed ID: 9153548
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Heat shock protein families 70 and 90 in Duchenne muscular dystrophy and inflammatory myopathy: balancing muscle protection and destruction.
    Paepe BD; Creus KK; Weis J; Bleecker JL
    Neuromuscul Disord; 2012 Jan; 22(1):26-33. PubMed ID: 21855341
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression of tumor necrosis factor-alpha in regenerating muscle fibers in inflammatory and non-inflammatory myopathies.
    Kuru S; Inukai A; Kato T; Liang Y; Kimura S; Sobue G
    Acta Neuropathol; 2003 Mar; 105(3):217-24. PubMed ID: 12557007
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of gamma-delta T lymphocytes in inflammatory muscle disease.
    Hohlfeld R; Engel AG
    Chem Immunol; 1992; 53():75-85. PubMed ID: 1534237
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Idiopathic inflammatory myopathies: inclusion-body myositis, polymyositis, and dermatomyositis.
    Askanas V; Engel WK; Mirabella M
    Curr Opin Neurol; 1994 Oct; 7(5):448-56. PubMed ID: 7804466
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential expression of chemokines in inflammatory myopathies.
    De Bleecker JL; De Paepe B; Vanwalleghem IE; Schröder JM
    Neurology; 2002 Jun; 58(12):1779-85. PubMed ID: 12084877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.