BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15019780)

  • 1. Nucleotide binding to DNA gyrase causes loss of DNA wrap.
    Heddle JG; Mitelheiser S; Maxwell A; Thomson NH
    J Mol Biol; 2004 Mar; 337(3):597-610. PubMed ID: 15019780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow interaction of 5'-adenylyl-beta,gamma-imidodiphosphate with Escherichia coli DNA gyrase. Evidence for cooperativity in nucleotide binding.
    Tamura JK; Bates AD; Gellert M
    J Biol Chem; 1992 May; 267(13):9214-22. PubMed ID: 1315750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locking the ATP-operated clamp of DNA gyrase: probing the mechanism of strand passage.
    Williams NL; Howells AJ; Maxwell A
    J Mol Biol; 2001 Mar; 306(5):969-84. PubMed ID: 11237612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E. coli Gyrase Fails to Negatively Supercoil Diaminopurine-Substituted DNA.
    Fernández-Sierra M; Shao Q; Fountain C; Finzi L; Dunlap D
    J Mol Biol; 2015 Jul; 427(13):2305-18. PubMed ID: 25902201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding and Hydrolysis of a Single ATP Is Sufficient for N-Gate Closure and DNA Supercoiling by Gyrase.
    Hartmann S; Gubaev A; Klostermeier D
    J Mol Biol; 2017 Nov; 429(23):3717-3729. PubMed ID: 29032205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting nucleotide thiophosphates to probe mechanistic aspects of Escherichia coli DNA gyrase.
    Cullis PM; Maxwell A; Weiner DP
    Biochemistry; 1997 May; 36(20):6059-68. PubMed ID: 9166776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy coupling in Escherichia coli DNA gyrase: the relationship between nucleotide binding, strand passage, and DNA supercoiling.
    Bates AD; O'Dea MH; Gellert M
    Biochemistry; 1996 Feb; 35(5):1408-16. PubMed ID: 8634270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide binding to the 43-kilodalton N-terminal fragment of the DNA gyrase B protein.
    Ali JA; Orphanides G; Maxwell A
    Biochemistry; 1995 Aug; 34(30):9801-8. PubMed ID: 7626649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic coupling between conformations and nucleotide states in DNA gyrase.
    Basu A; Hobson M; Lebel P; Fernandes LE; Tretter EM; Berger JM; Bryant Z
    Nat Chem Biol; 2018 Jun; 14(6):565-574. PubMed ID: 29662209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The "GyrA-box" is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction.
    Kramlinger VM; Hiasa H
    J Biol Chem; 2006 Feb; 281(6):3738-42. PubMed ID: 16332690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the B subunit of Escherichia coli DNA gyrase that affect ATP-dependent reactions.
    O'Dea MH; Tamura JK; Gellert M
    J Biol Chem; 1996 Apr; 271(16):9723-9. PubMed ID: 8621650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The GyrA-box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle.
    Lanz MA; Klostermeier D
    Nucleic Acids Res; 2012 Nov; 40(21):10893-903. PubMed ID: 22977179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The acidic C-terminal tail of the GyrA subunit moderates the DNA supercoiling activity of Bacillus subtilis gyrase.
    Lanz MA; Farhat M; Klostermeier D
    J Biol Chem; 2014 May; 289(18):12275-85. PubMed ID: 24563461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque.
    Nöllmann M; Stone MD; Bryant Z; Gore J; Crisona NJ; Hong SC; Mitelheiser S; Maxwell A; Bustamante C; Cozzarelli NR
    Nat Struct Mol Biol; 2007 Apr; 14(4):264-71. PubMed ID: 17334374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA.
    Basu A; Schoeffler AJ; Berger JM; Bryant Z
    Nat Struct Mol Biol; 2012 Apr; 19(5):538-46, S1. PubMed ID: 22484318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center.
    Brino L; Urzhumtsev A; Mousli M; Bronner C; Mitschler A; Oudet P; Moras D
    J Biol Chem; 2000 Mar; 275(13):9468-75. PubMed ID: 10734094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional "latch" in the mechanism of reverse gyrase.
    Rodriguez AC
    J Biol Chem; 2002 Aug; 277(33):29865-73. PubMed ID: 12048189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why Two? On the Role of (A-)Symmetry in Negative Supercoiling of DNA by Gyrase.
    Klostermeier D
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29772727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conversion of DNA gyrase into a conventional type II topoisomerase.
    Kampranis SC; Maxwell A
    Proc Natl Acad Sci U S A; 1996 Dec; 93(25):14416-21. PubMed ID: 8962066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.