BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 15020049)

  • 1. Transcriptional elongation control by RNA polymerase II: a new frontier.
    Shilatifard A
    Biochim Biophys Acta; 2004 Mar; 1677(1-3):79-86. PubMed ID: 15020049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaving a mark: the many footprints of the elongating RNA polymerase II.
    Eissenberg JC; Shilatifard A
    Curr Opin Genet Dev; 2006 Apr; 16(2):184-90. PubMed ID: 16503129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional elongation by RNA polymerase II and histone methylation.
    Gerber M; Shilatifard A
    J Biol Chem; 2003 Jul; 278(29):26303-6. PubMed ID: 12764140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylation of SPT5 regulates its interaction with RNA polymerase II and transcriptional elongation properties.
    Kwak YT; Guo J; Prajapati S; Park KJ; Surabhi RM; Miller B; Gehrig P; Gaynor RB
    Mol Cell; 2003 Apr; 11(4):1055-66. PubMed ID: 12718890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elongation by RNA polymerase II: the short and long of it.
    Sims RJ; Belotserkovskaya R; Reinberg D
    Genes Dev; 2004 Oct; 18(20):2437-68. PubMed ID: 15489290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Composition of the Arabidopsis RNA Polymerase II Transcript Elongation Complex Reveals the Interplay between Elongation and mRNA Processing Factors.
    Antosz W; Pfab A; Ehrnsberger HF; Holzinger P; Köllen K; Mortensen SA; Bruckmann A; Schubert T; Längst G; Griesenbeck J; Schubert V; Grasser M; Grasser KD
    Plant Cell; 2017 Apr; 29(4):854-870. PubMed ID: 28351991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript.
    Zhang Z; Gilmour DS
    Mol Cell; 2006 Jan; 21(1):65-74. PubMed ID: 16387654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing.
    Schneider DA; French SL; Osheim YN; Bailey AO; Vu L; Dodd J; Yates JR; Beyer AL; Nomura M
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12707-12. PubMed ID: 16908835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies of the mRNA transcription cycle.
    Cramer P
    Biochem Soc Symp; 2006; (73):41-7. PubMed ID: 16626285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separable functions of the fission yeast Spt5 carboxyl-terminal domain (CTD) in capping enzyme binding and transcription elongation overlap with those of the RNA polymerase II CTD.
    Schneider S; Pei Y; Shuman S; Schwer B
    Mol Cell Biol; 2010 May; 30(10):2353-64. PubMed ID: 20231361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of transcription elongation.
    Martinez-Rucobo FW; Cramer P
    Biochim Biophys Acta; 2013 Jan; 1829(1):9-19. PubMed ID: 22982352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease.
    Sharma N
    IUBMB Life; 2016 Sep; 68(9):709-16. PubMed ID: 27473825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent highlights of RNA-polymerase-II-mediated transcription.
    Sims RJ; Mandal SS; Reinberg D
    Curr Opin Cell Biol; 2004 Jun; 16(3):263-71. PubMed ID: 15145350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription elongation factors repress transcription initiation from cryptic sites.
    Kaplan CD; Laprade L; Winston F
    Science; 2003 Aug; 301(5636):1096-9. PubMed ID: 12934008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription.
    Zhou M; Deng L; Lacoste V; Park HU; Pumfery A; Kashanchi F; Brady JN; Kumar A
    J Virol; 2004 Dec; 78(24):13522-33. PubMed ID: 15564463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA polymerase II structure: from core to functional complexes.
    Cramer P
    Curr Opin Genet Dev; 2004 Apr; 14(2):218-26. PubMed ID: 15196470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast and Human RNA polymerase II elongation complexes: evidence for functional differences and postinitiation recruitment of factors.
    Pardee TS; Ghazy MA; Ponticelli AS
    Eukaryot Cell; 2003 Apr; 2(2):318-27. PubMed ID: 12684381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo.
    Mason PB; Struhl K
    Mol Cell; 2005 Mar; 17(6):831-40. PubMed ID: 15780939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila.
    Andrulis ED; Werner J; Nazarian A; Erdjument-Bromage H; Tempst P; Lis JT
    Nature; 2002 Dec 19-26; 420(6917):837-41. PubMed ID: 12490954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation.
    Yamada T; Yamaguchi Y; Inukai N; Okamoto S; Mura T; Handa H
    Mol Cell; 2006 Jan; 21(2):227-37. PubMed ID: 16427012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.