BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 15020143)

  • 1. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study.
    Wang X; Grogan SP; Rieser F; Winkelmann V; Maquet V; Berge ML; Mainil-Varlet P
    Biomaterials; 2004 Aug; 25(17):3681-8. PubMed ID: 15020143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary evaluation of fish cartilage as a promising biomaterial in cartilage tissue engineering.
    Zamani A; Khajavi M; Nazarpak MH; Solouk A; Atef M
    Ann Anat; 2024 Apr; 253():152232. PubMed ID: 38402996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin-based biomaterials for cartilage/osteochondral repair.
    Zhou Z; Cui J; Wu S; Geng Z; Su J
    Theranostics; 2022; 12(11):5103-5124. PubMed ID: 35836802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyapatite formation in biomimetic synthesis with the interface of a pDA@SIS membrane.
    Zhu Q; Jiao H; Zhao X; Tang Y; Zhao K; Gou X
    RSC Adv; 2022 Apr; 12(21):13209-13219. PubMed ID: 35520114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsphere-Based Hierarchically Juxtapositioned Biphasic Scaffolds Prepared from Poly(Lactic-co-Glycolic Acid) and Nanohydroxyapatite for Osteochondral Tissue Engineering.
    Shalumon KT; Sheu C; Fong YT; Liao HT; Chen JP
    Polymers (Basel); 2016 Dec; 8(12):. PubMed ID: 30974705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite.
    Xiao H; Huang W; Xiong K; Ruan S; Yuan C; Mo G; Tian R; Zhou S; She R; Ye P; Liu B; Deng J
    Int J Nanomedicine; 2019; 14():2011-2027. PubMed ID: 30962685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Challenges in Fabrication of Tissue-Engineered Cartilage with Correct Cellular Colonization and Extracellular Matrix Assembly.
    Lammi MJ; Piltti J; Prittinen J; Qu C
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-hydroxyapatite/collagen film as a favorable substrate to maintain the phenotype and promote the growth of chondrocytes cultured in vitro.
    Jiang X; Zhong Y; Zheng L; Zhao J
    Int J Mol Med; 2018 Apr; 41(4):2150-2158. PubMed ID: 29393382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blends and Nanocomposite Biomaterials for Articular Cartilage Tissue Engineering.
    Doulabi AH; Mequanint K; Mohammadi H
    Materials (Basel); 2014 Jul; 7(7):5327-5355. PubMed ID: 28788131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Templated Growth of Bone Minerals from Modified Simulated Body Fluid on Nanofibrous Decellularized Natural Tissues.
    Yang M; Wang J; Zhu Y; Mao C
    J Biomed Nanotechnol; 2016 Apr; 12(4):753-61. PubMed ID: 27301201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An overview of recent patents on musculoskeletal interface tissue engineering.
    Rao RT; Browe DP; Lowe CJ; Freeman JW
    Connect Tissue Res; 2016; 57(1):53-67. PubMed ID: 26577344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications.
    Dorozhkin SV
    J Funct Biomater; 2015 Aug; 6(3):708-832. PubMed ID: 26262645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration.
    Li JJ; Kim K; Roohani-Esfahani SI; Guo J; Kaplan DL; Zreiqat H
    J Mater Chem B; 2015 Jul; 3(26):5361-5376. PubMed ID: 26167284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repairing the osteochondral defect in goat with the tissue-engineered osteochondral graft preconstructed in a double-chamber stirring bioreactor.
    Pei Y; Fan JJ; Zhang XQ; Zhang ZY; Yu M
    Biomed Res Int; 2014; 2014():219203. PubMed ID: 25061604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone substitutes in orthopaedic surgery: from basic science to clinical practice.
    Campana V; Milano G; Pagano E; Barba M; Cicione C; Salonna G; Lattanzi W; Logroscino G
    J Mater Sci Mater Med; 2014 Oct; 25(10):2445-61. PubMed ID: 24865980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocomposites and hybrid biomaterials based on calcium orthophosphates.
    Dorozhkin SV
    Biomatter; 2011; 1(1):3-56. PubMed ID: 23507726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of compact layer in biphasic scaffold on osteochondral tissue engineering.
    Da H; Jia SJ; Meng GL; Cheng JH; Zhou W; Xiong Z; Mu YJ; Liu J
    PLoS One; 2013; 8(1):e54838. PubMed ID: 23382984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteochondral tissue engineering: scaffolds, stem cells and applications.
    Nooeaid P; Salih V; Beier JP; Boccaccini AR
    J Cell Mol Med; 2012 Oct; 16(10):2247-70. PubMed ID: 22452848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hydrogel-mineral composite scaffold for osteochondral interface tissue engineering.
    Khanarian NT; Jiang J; Wan LQ; Mow VC; Lu HH
    Tissue Eng Part A; 2012 Mar; 18(5-6):533-45. PubMed ID: 21919797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osteogenic activity of MG63 cells on bone-like hydroxyapatite/collagen nanocomposite sponges.
    Yoshida T; Kikuchi M; Koyama Y; Takakuda K
    J Mater Sci Mater Med; 2010 Apr; 21(4):1263-72. PubMed ID: 19924517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.