BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 15020636)

  • 1. Chloroplast proteomics: potentials and challenges.
    Baginsky S; Gruissem W
    J Exp Bot; 2004 May; 55(400):1213-20. PubMed ID: 15020636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The wheat chloroplastic proteome.
    Kamal AH; Cho K; Choi JS; Bae KH; Komatsu S; Uozumi N; Woo SH
    J Proteomics; 2013 Nov; 93():326-42. PubMed ID: 23563086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctionality of plastid nucleoids as revealed by proteome analyses.
    Melonek J; Oetke S; Krupinska K
    Biochim Biophys Acta; 2016 Aug; 1864(8):1016-38. PubMed ID: 26987276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastid proteomics.
    van Wijk KJ
    Plant Physiol Biochem; 2004 Dec; 42(12):963-77. PubMed ID: 15707834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions.
    Majeran W; Friso G; Asakura Y; Qu X; Huang M; Ponnala L; Watkins KP; Barkan A; van Wijk KJ
    Plant Physiol; 2012 Jan; 158(1):156-89. PubMed ID: 22065420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissecting the chloroplast proteome of chickpea (Cicer arietinum L.) provides new insights into classical and non-classical functions.
    Lande NV; Subba P; Barua P; Gayen D; Keshava Prasad TS; Chakraborty S; Chakraborty N
    J Proteomics; 2017 Aug; 165():11-20. PubMed ID: 28624520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways.
    Joyard J; Ferro M; Masselon C; Seigneurin-Berny D; Salvi D; Garin J; Rolland N
    Mol Plant; 2009 Nov; 2(6):1154-80. PubMed ID: 19969518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perturbation of protein homeostasis brings plastids at the crossroad between repair and dismantling.
    Tadini L; Jeran N; Domingo G; Zambelli F; Masiero S; Calabritto A; Costantini E; Forlani S; Marsoni M; Briani F; Vannini C; Pesaresi P
    PLoS Genet; 2023 Jul; 19(7):e1010344. PubMed ID: 37418499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions.
    Kleffmann T; Russenberger D; von Zychlinski A; Christopher W; Sjölander K; Gruissem W; Baginsky S
    Curr Biol; 2004 Mar; 14(5):354-62. PubMed ID: 15028209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastid biogenesis, between light and shadows.
    López-Juez E
    J Exp Bot; 2007; 58(1):11-26. PubMed ID: 17108152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plastid Nucleoids: Insights into Their Shape and Dynamics.
    Nishimura Y
    Plant Cell Physiol; 2024 May; 65(4):551-559. PubMed ID: 37542434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the DNA/RNA-Associated Subproteome from Chloroplasts and Other Plastid Types.
    Chieb M; Liebers M; Chevalier F; Lerbs-Mache S; Blanvillain R; Pfannschmidt T
    Methods Mol Biol; 2018; 1829():253-271. PubMed ID: 29987727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gel-based proteomic map of Arabidopsis thaliana root plastids and mitochondria.
    Grabsztunowicz M; Rokka A; Farooq I; Aro EM; Mulo P
    BMC Plant Biol; 2020 Sep; 20(1):413. PubMed ID: 32887556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastid proteomics in higher plants: current state and future goals.
    van Wijk KJ; Baginsky S
    Plant Physiol; 2011 Apr; 155(4):1578-88. PubMed ID: 21350036
    [No Abstract]   [Full Text] [Related]  

  • 15. Chloroplast function revealed through analysis of GreenCut2 genes.
    Fristedt R
    J Exp Bot; 2017 Apr; 68(9):2111-2120. PubMed ID: 28369575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.
    Ferro M; Brugière S; Salvi D; Seigneurin-Berny D; Court M; Moyet L; Ramus C; Miras S; Mellal M; Le Gall S; Kieffer-Jaquinod S; Bruley C; Garin J; Joyard J; Masselon C; Rolland N
    Mol Cell Proteomics; 2010 Jun; 9(6):1063-84. PubMed ID: 20061580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular Proteomics in Conifers: Purification of Nuclei and Chloroplast Proteomes.
    Lamelas L; García L; Cañal MJ; Meijón M
    Methods Mol Biol; 2020; 2139():69-78. PubMed ID: 32462578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The plastid transcription machinery and its coordination with the expression of nuclear genome: Plastid-Encoded Polymerase, Nuclear-Encoded Polymerase and the Genomes Uncoupled 1-mediated retrograde communication.
    Tadini L; Jeran N; Peracchio C; Masiero S; Colombo M; Pesaresi P
    Philos Trans R Soc Lond B Biol Sci; 2020 Jun; 375(1801):20190399. PubMed ID: 32362266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of chromoplasts and other plastids in plants.
    Sadali NM; Sowden RG; Ling Q; Jarvis RP
    Plant Cell Rep; 2019 Jul; 38(7):803-818. PubMed ID: 31079194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic studies in plants.
    Park OK
    J Biochem Mol Biol; 2004 Jan; 37(1):133-8. PubMed ID: 14761311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.