BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15020665)

  • 1. Disposition mechanisms of raloxifene in the human intestinal Caco-2 model.
    Jeong EJ; Lin H; Hu M
    J Pharmacol Exp Ther; 2004 Jul; 310(1):376-85. PubMed ID: 15020665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model.
    Hu M; Chen J; Lin H
    J Pharmacol Exp Ther; 2003 Oct; 307(1):314-21. PubMed ID: 12893842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model.
    Chen J; Lin H; Hu M
    Cancer Chemother Pharmacol; 2005 Feb; 55(2):159-69. PubMed ID: 15455178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin.
    Liu W; Feng Q; Li Y; Ye L; Hu M; Liu Z
    Toxicol Appl Pharmacol; 2012 Dec; 265(3):316-24. PubMed ID: 22982073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vectorial transport of fexofenadine across Caco-2 cells: involvement of apical uptake and basolateral efflux transporters.
    Ming X; Knight BM; Thakker DR
    Mol Pharm; 2011 Oct; 8(5):1677-86. PubMed ID: 21780830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disposition of formononetin via enteric recycling: metabolism and excretion in mouse intestinal perfusion and Caco-2 cell models.
    Jeong EJ; Jia X; Hu M
    Mol Pharm; 2005; 2(4):319-28. PubMed ID: 16053335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH dependence of organic anion-transporting polypeptide 2B1 in Caco-2 cells: potential role in antiretroviral drug oral bioavailability and drug-drug interactions.
    Kis O; Zastre JA; Ramaswamy M; Bendayan R
    J Pharmacol Exp Ther; 2010 Sep; 334(3):1009-22. PubMed ID: 20507927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2.
    Yu L; Zeng S
    J Pharm Pharmacol; 2007 May; 59(5):655-60. PubMed ID: 17524230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species- and disposition model-dependent metabolism of raloxifene in gut and liver: role of UGT1A10.
    Jeong EJ; Liu Y; Lin H; Hu M
    Drug Metab Dispos; 2005 Jun; 33(6):785-94. PubMed ID: 15769887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselective and multiple carrier-mediated transport of cetirizine across Caco-2 cell monolayers with potential drug interaction.
    He Y; Liu Y; Zeng S
    Chirality; 2010 Jul; 22(7):684-92. PubMed ID: 20014242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms of the naringin low uptake by intestinal Caco-2 cells.
    Tourniaire F; Hassan M; André M; Ghiringhelli O; Alquier C; Amiot MJ
    Mol Nutr Food Res; 2005 Oct; 49(10):957-62. PubMed ID: 16189799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfonation of raloxifene in HEK293 cells overexpressing SULT1A3: Involvement of breast cancer resistance protein (BCRP/ABCG2) and multidrug resistance-associated protein 4 (MRP4/ABCC4) in excretion of sulfate metabolites.
    Zhou X; Wang S; Sun H; Wu B
    Drug Metab Pharmacokinet; 2015 Dec; 30(6):425-33. PubMed ID: 26611713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A catenary model to study transport and conjugation of baicalein, a bioactive flavonoid, in the Caco-2 cell monolayer: demonstration of substrate inhibition.
    Sun H; Zhang L; Chow EC; Lin G; Zuo Z; Pang KS
    J Pharmacol Exp Ther; 2008 Jul; 326(1):117-26. PubMed ID: 18385448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport characteristics of rutin deca (H-) sulfonate sodium across Caco-2 cell monolayers.
    He Y; Zeng S
    J Pharm Pharmacol; 2005 Oct; 57(10):1297-303. PubMed ID: 16259758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into the carrier-mediated transport of estrone-3-sulfate in the Caco-2 cell model.
    Grandvuinet AS; Gustavsson L; Steffansen B
    Mol Pharm; 2013 Sep; 10(9):3285-95. PubMed ID: 23834246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application and limitation of inhibitors in drug-transporter interactions studies.
    Wang Q; Strab R; Kardos P; Ferguson C; Li J; Owen A; Hidalgo IJ
    Int J Pharm; 2008 May; 356(1-2):12-8. PubMed ID: 18272304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells.
    Sachs-Barrable K; Thamboo A; Lee SD; Wasan KM
    J Pharm Pharm Sci; 2007; 10(3):319-31. PubMed ID: 17727795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predominant contribution of organic anion transporting polypeptide OATP-B (OATP2B1) to apical uptake of estrone-3-sulfate by human intestinal Caco-2 cells.
    Sai Y; Kaneko Y; Ito S; Mitsuoka K; Kato Y; Tamai I; Artursson P; Tsuji A
    Drug Metab Dispos; 2006 Aug; 34(8):1423-31. PubMed ID: 16714376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarized efflux of mono- and diacid metabolites of ME3229, an ester-type prodrug of a glycoprotein IIb/IIIa receptor antagonist, in rat small intestine.
    Okudaira N; Komiya I; Sugiyama Y
    J Pharmacol Exp Ther; 2000 Nov; 295(2):717-23. PubMed ID: 11046110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of xenobiotic efflux transporters in resistance to vincristine.
    Huang RS; Murry DJ; Foster DR
    Biomed Pharmacother; 2008 Feb; 62(2):59-64. PubMed ID: 17583464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.