BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 15020716)

  • 1. Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration.
    Bunker JM; Wilson L; Jordan MA; Feinstein SC
    Mol Biol Cell; 2004 Jun; 15(6):2720-8. PubMed ID: 15020716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three- and four-repeat tau regulate the dynamic instability of two distinct microtubule subpopulations in qualitatively different manners. Implications for neurodegeneration.
    Levy SF; Leboeuf AC; Massie MR; Jordan MA; Wilson L; Feinstein SC
    J Biol Chem; 2005 Apr; 280(14):13520-8. PubMed ID: 15671021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease.
    Goode BL; Chau M; Denis PE; Feinstein SC
    J Biol Chem; 2000 Dec; 275(49):38182-9. PubMed ID: 10984497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tau isoform-specific stabilization of intermediate states during microtubule assembly and disassembly.
    Best RL; LaPointe NE; Liang J; Ruan K; Shade MF; Wilson L; Feinstein SC
    J Biol Chem; 2019 Aug; 294(33):12265-12280. PubMed ID: 31266806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FTDP-17 mutations compromise the ability of tau to regulate microtubule dynamics in cells.
    Bunker JM; Kamath K; Wilson L; Jordan MA; Feinstein SC
    J Biol Chem; 2006 Apr; 281(17):11856-63. PubMed ID: 16495230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential regulation of microtubule dynamics by three- and four-repeat tau: implications for the onset of neurodegenerative disease.
    Panda D; Samuel JC; Massie M; Feinstein SC; Wilson L
    Proc Natl Acad Sci U S A; 2003 Aug; 100(16):9548-53. PubMed ID: 12886013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and functional characterization of chicken brain tau: isoforms with up to five tandem repeats.
    Yoshida H; Goedert M
    Biochemistry; 2002 Dec; 41(51):15203-11. PubMed ID: 12484758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death.
    Feinstein SC; Wilson L
    Biochim Biophys Acta; 2005 Jan; 1739(2-3):268-79. PubMed ID: 15615645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional differences of tau isoforms containing 3 or 4 C-terminal repeat regions and the influence of oxidative stress.
    Utton MA; Gibb GM; Burdett ID; Anderton BH; Vandecandelaere A
    J Biol Chem; 2001 Sep; 276(36):34288-97. PubMed ID: 11438517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules.
    Trinczek B; Biernat J; Baumann K; Mandelkow EM; Mandelkow E
    Mol Biol Cell; 1995 Dec; 6(12):1887-902. PubMed ID: 8590813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FTDP-17 mutations in Tau alter the regulation of microtubule dynamics: an "alternative core" model for normal and pathological Tau action.
    LeBoeuf AC; Levy SF; Gaylord M; Bhattacharya A; Singh AK; Jordan MA; Wilson L; Feinstein SC
    J Biol Chem; 2008 Dec; 283(52):36406-15. PubMed ID: 18940799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tau.
    Panda D; Goode BL; Feinstein SC; Wilson L
    Biochemistry; 1995 Sep; 34(35):11117-27. PubMed ID: 7669769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers.
    Kadavath H; Hofele RV; Biernat J; Kumar S; Tepper K; Urlaub H; Mandelkow E; Zweckstetter M
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7501-6. PubMed ID: 26034266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hsp70 alters tau function and aggregation in an isoform specific manner.
    Voss K; Combs B; Patterson KR; Binder LI; Gamblin TC
    Biochemistry; 2012 Jan; 51(4):888-98. PubMed ID: 22236337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous Tau-Tubulin Complexes Accelerate Microtubule Polymerization.
    Li XH; Rhoades E
    Biophys J; 2017 Jun; 112(12):2567-2574. PubMed ID: 28636913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axodendritic sorting and pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture.
    Zempel H; Dennissen FJA; Kumar Y; Luedtke J; Biernat J; Mandelkow EM; Mandelkow E
    J Biol Chem; 2017 Jul; 292(29):12192-12207. PubMed ID: 28536263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tau-isoform dependent enhancement of taxol mobility through microtubules.
    Park H; Kim M; Fygenson DK
    Arch Biochem Biophys; 2008 Oct; 478(1):119-26. PubMed ID: 18691553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three repeat isoforms of tau inhibit assembly of four repeat tau filaments.
    Adams SJ; DeTure MA; McBride M; Dickson DW; Petrucelli L
    PLoS One; 2010 May; 5(5):e10810. PubMed ID: 20520830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly.
    Goode BL; Denis PE; Panda D; Radeke MJ; Miller HP; Wilson L; Feinstein SC
    Mol Biol Cell; 1997 Feb; 8(2):353-65. PubMed ID: 9190213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered tubulin assembly dynamics with N-homocysteinylated human 4R/1N tau in vitro.
    Karima O; Riazi G; Khodadadi S; Aryapour H; Khalili MA; Yousefi L; Moosavi-Movahedi AA
    FEBS Lett; 2012 Nov; 586(21):3914-9. PubMed ID: 23041345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.