These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Construction of a BAC contig map of chromosome 16q by two-dimensional overgo hybridization. Han CS; Sutherland RD; Jewett PB; Campbell ML; Meincke LJ; Tesmer JG; Mundt MO; Fawcett JJ; Kim UJ; Deaven LL; Doggett NA Genome Res; 2000 May; 10(5):714-21. PubMed ID: 10810094 [TBL] [Abstract][Full Text] [Related]
3. Integration of animal linkage and BAC contig maps using overgo hybridization. Romanov MN; Price JA; Dodgson JB Cytogenet Genome Res; 2003; 102(1-4):277-81. PubMed ID: 14970717 [TBL] [Abstract][Full Text] [Related]
4. Cross-species bacterial artificial chromosome (BAC) library screening via overgo-based hybridization and BAC-contig mapping of a yield enhancement quantitative trait locus (QTL) yld1.1 in the Malaysian wild rice Oryza rufipogon. Song BK; Nadarajah K; Romanov MN; Ratnam W Cell Mol Biol Lett; 2005; 10(3):425-37. PubMed ID: 16217554 [TBL] [Abstract][Full Text] [Related]
5. Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Yim YS; Davis GL; Duru NA; Musket TA; Linton EW; Messing JW; McMullen MD; Soderlund CA; Polacco ML; Gardiner JM; Coe EH Plant Physiol; 2002 Dec; 130(4):1686-96. PubMed ID: 12481051 [TBL] [Abstract][Full Text] [Related]
6. Integration of hybridization-based markers (overgos) into physical maps for comparative and evolutionary explorations in the genus Oryza and in Sorghum. Hass-Jacobus BL; Futrell-Griggs M; Abernathy B; Westerman R; Goicoechea JL; Stein J; Klein P; Hurwitz B; Zhou B; Rakhshan F; Sanyal A; Gill N; Lin JY; Walling JG; Luo MZ; Ammiraju JS; Kudrna D; Kim HR; Ware D; Wing RA; San Miguel P; Jackson SA BMC Genomics; 2006 Aug; 7():199. PubMed ID: 16895597 [TBL] [Abstract][Full Text] [Related]
7. An integrated genetic and physical map of homoeologous chromosomes 12 and 26 in Upland cotton (G. hirsutum L.). Xu Z; Kohel RJ; Song G; Cho J; Yu J; Yu S; Tomkins J; Yu JZ BMC Genomics; 2008 Feb; 9():108. PubMed ID: 18307816 [TBL] [Abstract][Full Text] [Related]
8. A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps. Yim YS; Moak P; Sanchez-Villeda H; Musket TA; Close P; Klein PE; Mullet JE; McMullen MD; Fang Z; Schaeffer ML; Gardiner JM; Coe EH; Davis GL BMC Genomics; 2007 Feb; 8():47. PubMed ID: 17291341 [TBL] [Abstract][Full Text] [Related]
9. Genetic marker anchoring by six-dimensional pools for development of a soybean physical map. Wu X; Zhong G; Findley SD; Cregan P; Stacey G; Nguyen HT BMC Genomics; 2008 Jan; 9():28. PubMed ID: 18211698 [TBL] [Abstract][Full Text] [Related]
10. Homology-driven assembly of a sequence-ready mouse BAC contig map spanning regions related to the 46-Mb gene-rich euchromatic segments of human chromosome 19. Kim J; Gordon L; Dehal P; Badri H; Christensen M; Groza M; Ha C; Hammond S; Vargas M; Wehri E; Wagner M; Olsen A; Stubbs L Genomics; 2001 Jun; 74(2):129-41. PubMed ID: 11386749 [TBL] [Abstract][Full Text] [Related]
13. A BAC-based physical map of the channel catfish genome. Xu P; Wang S; Liu L; Thorsen J; Kucuktas H; Liu Z Genomics; 2007 Sep; 90(3):380-8. PubMed ID: 17582737 [TBL] [Abstract][Full Text] [Related]
14. An ordered BAC contig map of the equine major histocompatibility complex. Gustafson AL; Tallmadge RL; Ramlachan N; Miller D; Bird H; Antczak DF; Raudsepp T; Chowdhary BP; Skow LC Cytogenet Genome Res; 2003; 102(1-4):189-95. PubMed ID: 14970701 [TBL] [Abstract][Full Text] [Related]
15. The physical and genetic framework of the maize B73 genome. Wei F; Zhang J; Zhou S; He R; Schaeffer M; Collura K; Kudrna D; Faga BP; Wissotski M; Golser W; Rock SM; Graves TA; Fulton RS; Coe E; Schnable PS; Schwartz DC; Ware D; Clifton SW; Wilson RK; Wing RA PLoS Genet; 2009 Nov; 5(11):e1000715. PubMed ID: 19936061 [TBL] [Abstract][Full Text] [Related]
16. Parallel construction of orthologous sequence-ready clone contig maps in multiple species. Thomas JW; Prasad AB; Summers TJ; Lee-Lin SQ; Maduro VV; Idol JR; Ryan JF; Thomas PJ; McDowell JC; Green ED Genome Res; 2002 Aug; 12(8):1277-85. PubMed ID: 12176935 [TBL] [Abstract][Full Text] [Related]
17. Comparative analysis of a BAC contig of porcine chromosome 13q31-q32 and human chromosome 3q21-q22. Van Poucke M; Bourry D; Piumi F; Mattheeuws M; Van Zeveren A; Chardon P; Peelman LJ BMC Genomics; 2005 Sep; 6():133. PubMed ID: 16176575 [TBL] [Abstract][Full Text] [Related]
18. Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Lu HJ; Fellers JP; Friesen TL; Meinhardt SW; Faris JD Theor Appl Genet; 2006 Apr; 112(6):1132-42. PubMed ID: 16456656 [TBL] [Abstract][Full Text] [Related]
19. Construction of BAC and BIBAC libraries from sunflower and identification of linkage group-specific clones by overgo hybridization. Feng J; Vick BA; Lee MK; Zhang HB; Jan CC Theor Appl Genet; 2006 Jun; 113(1):23-32. PubMed ID: 16612648 [TBL] [Abstract][Full Text] [Related]
20. A genome-wide BAC end-sequence survey of sugarcane elucidates genome composition, and identifies BACs covering much of the euchromatin. Kim C; Lee TH; Compton RO; Robertson JS; Pierce GJ; Paterson AH Plant Mol Biol; 2013 Jan; 81(1-2):139-47. PubMed ID: 23161199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]