These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15020769)

  • 1. A nascent polypeptide domain that can regulate translation elongation.
    Fang P; Spevak CC; Wu C; Sachs MS
    Proc Natl Acad Sci U S A; 2004 Mar; 101(12):4059-64. PubMed ID: 15020769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence requirements for ribosome stalling by the arginine attenuator peptide.
    Spevak CC; Ivanov IP; Sachs MS
    J Biol Chem; 2010 Dec; 285(52):40933-42. PubMed ID: 20884617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The arginine attenuator peptide interferes with the ribosome peptidyl transferase center.
    Wei J; Wu C; Sachs MS
    Mol Cell Biol; 2012 Jul; 32(13):2396-406. PubMed ID: 22508989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evolutionarily conserved eukaryotic arginine attenuator peptide regulates the movement of ribosomes that have translated it.
    Wang Z; Fang P; Sachs MS
    Mol Cell Biol; 1998 Dec; 18(12):7528-36. PubMed ID: 9819438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionarily conserved features of the arginine attenuator peptide provide the necessary requirements for its function in translational regulation.
    Fang P; Wang Z; Sachs MS
    J Biol Chem; 2000 Sep; 275(35):26710-9. PubMed ID: 10818103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide.
    Bhushan S; Meyer H; Starosta AL; Becker T; Mielke T; Berninghausen O; Sattler M; Wilson DN; Beckmann R
    Mol Cell; 2010 Oct; 40(1):138-46. PubMed ID: 20932481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A highly conserved mechanism of regulated ribosome stalling mediated by fungal arginine attenuator peptides that appears independent of the charging status of arginyl-tRNAs.
    Wang Z; Gaba A; Sachs MS
    J Biol Chem; 1999 Dec; 274(53):37565-74. PubMed ID: 10608810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arginine changes the conformation of the arginine attenuator peptide relative to the ribosome tunnel.
    Wu C; Wei J; Lin PJ; Tu L; Deutsch C; Johnson AE; Sachs MS
    J Mol Biol; 2012 Mar; 416(4):518-33. PubMed ID: 22244852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame.
    Hood HM; Spevak CC; Sachs MS
    Fungal Genet Biol; 2007 Feb; 44(2):93-104. PubMed ID: 16979358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translation regulation via nascent polypeptide-mediated ribosome stalling.
    Wilson DN; Arenz S; Beckmann R
    Curr Opin Struct Biol; 2016 Apr; 37():123-33. PubMed ID: 26859868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribosome stalling is responsible for arginine-specific translational attenuation in Neurospora crassa.
    Wang Z; Sachs MS
    Mol Cell Biol; 1997 Sep; 17(9):4904-13. PubMed ID: 9271370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nascent polypeptide sequences that influence ribosome function.
    Cruz-Vera LR; Sachs MS; Squires CL; Yanofsky C
    Curr Opin Microbiol; 2011 Apr; 14(2):160-6. PubMed ID: 21342782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic depletion of the RNA helicase DDX3 leads to impaired elongation of translating ribosomes triggering co-translational quality control of newly synthesized polypeptides.
    Padmanabhan PK; Ferreira GR; Zghidi-Abouzid O; Oliveira C; Dumas C; Mariz FC; Papadopoulou B
    Nucleic Acids Res; 2021 Sep; 49(16):9459-9478. PubMed ID: 34358325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multisite ribosomal stalling: a unique mode of regulatory nascent chain action revealed for MifM.
    Chiba S; Ito K
    Mol Cell; 2012 Sep; 47(6):863-72. PubMed ID: 22864117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of ribosome rescue in bacteria.
    Keiler KC
    Nat Rev Microbiol; 2015 May; 13(5):285-97. PubMed ID: 25874843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis.
    Onouchi H; Nagami Y; Haraguchi Y; Nakamoto M; Nishimura Y; Sakurai R; Nagao N; Kawasaki D; Kadokura Y; Naito S
    Genes Dev; 2005 Aug; 19(15):1799-810. PubMed ID: 16027170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Widespread is Metabolite Sensing by Ribosome-Arresting Nascent Peptides?
    Seip B; Innis CA
    J Mol Biol; 2016 May; 428(10 Pt B):2217-27. PubMed ID: 27108680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide.
    Vázquez-Laslop N; Ramu H; Klepacki D; Kannan K; Mankin AS
    EMBO J; 2010 Sep; 29(18):3108-17. PubMed ID: 20676057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nascent chain-mediated translation regulation in bacteria: translation arrest and intrinsic ribosome destabilization.
    Chiba S; Fujiwara K; Chadani Y; Taguchi H
    J Biochem; 2023 Mar; 173(4):227-236. PubMed ID: 36722132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.