These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 15020811)
1. Transformation systems in insects. O'Brochta DA; Atkinson PW Methods Mol Biol; 2004; 260():227-54. PubMed ID: 15020811 [TBL] [Abstract][Full Text] [Related]
2. Insulated piggyBac vectors for insect transgenesis. Sarkar A; Atapattu A; Belikoff EJ; Heinrich JC; Li X; Horn C; Wimmer EA; Scott MJ BMC Biotechnol; 2006 Jun; 6():27. PubMed ID: 16776846 [TBL] [Abstract][Full Text] [Related]
3. Tn5 as an insect gene vector. Rowan KH; Orsetti J; Atkinson PW; O'Brochta DA Insect Biochem Mol Biol; 2004 Jul; 34(7):695-705. PubMed ID: 15242711 [TBL] [Abstract][Full Text] [Related]
4. Genetic transformation systems in insects. Atkinson PW; Pinkerton AC; O'Brochta DA Annu Rev Entomol; 2001; 46():317-46. PubMed ID: 11112172 [TBL] [Abstract][Full Text] [Related]
5. P element-mediated germ-line transformation of Drosophila. O'Connor M; Chia W Methods Mol Biol; 1993; 18():75-85. PubMed ID: 21390646 [TBL] [Abstract][Full Text] [Related]
6. Somatic transformation efficiencies and expression patterns using the JcDNV and piggyBac transposon gene vectors in insects. Bossin H; Furlong RB; Gillett JL; Bergoin M; Shirk PD Insect Mol Biol; 2007 Feb; 16(1):37-47. PubMed ID: 17257207 [TBL] [Abstract][Full Text] [Related]
7. A P element transformation vector for high levels of gene expression in germ-line cells of the ovary and undifferentiated cells in the developing eye of Drosophila. Chen X; Fischer JA Plasmid; 2002 Jan; 47(1):61-5. PubMed ID: 11798286 [TBL] [Abstract][Full Text] [Related]
8. Understanding and improving transgene stability and expression in insects for SIT and conditional lethal release programs. Handler AM Insect Biochem Mol Biol; 2004 Feb; 34(2):121-30. PubMed ID: 14871608 [TBL] [Abstract][Full Text] [Related]
9. [A method for transformation of Drosophila germline cells with a high-concentration exogenous DNA]. Shilova IE; Omel'ianchuk LV Genetika; 2007 Jan; 43(1):96-9. PubMed ID: 17333944 [TBL] [Abstract][Full Text] [Related]
10. Insect transgenesis and its potential role in agriculture and human health. Robinson AS; Franz G; Atkinson PW Insect Biochem Mol Biol; 2004 Feb; 34(2):113-20. PubMed ID: 14871607 [TBL] [Abstract][Full Text] [Related]
11. Recombinant DNA technology and genetic control of pest insects. Cockburn AF; Howells AJ; Whitten MJ Biotechnol Genet Eng Rev; 1984; 2():69-99. PubMed ID: 6100669 [No Abstract] [Full Text] [Related]
15. Post-integration stabilization of a transposon vector by terminal sequence deletion in Drosophila melanogaster. Handler AM; Zimowska GJ; Horn C Nat Biotechnol; 2004 Sep; 22(9):1150-4. PubMed ID: 15300258 [TBL] [Abstract][Full Text] [Related]
16. Insect transgenesis: current applications and future prospects. Fraser MJ Annu Rev Entomol; 2012; 57():267-89. PubMed ID: 22149266 [TBL] [Abstract][Full Text] [Related]
17. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Gong P; Epton MJ; Fu G; Scaife S; Hiscox A; Condon KC; Condon GC; Morrison NI; Kelly DW; Dafa'alla T; Coleman PG; Alphey L Nat Biotechnol; 2005 Apr; 23(4):453-6. PubMed ID: 15750586 [TBL] [Abstract][Full Text] [Related]