These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 1502174)

  • 1. Neurally evoked calcium transients in terminal Schwann cells at the neuromuscular junction.
    Reist NE; Smith SJ
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7625-9. PubMed ID: 1502174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ.
    Jahromi BS; Robitaille R; Charlton MP
    Neuron; 1992 Jun; 8(6):1069-77. PubMed ID: 1351731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of adenosine on Ca2+ entry in the nerve terminal of the frog neuromuscular junction.
    Robitaille R; Thomas S; Charlton MP
    Can J Physiol Pharmacol; 1999 Sep; 77(9):707-14. PubMed ID: 10566948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregates of acetylcholine receptors are not observed under anti-agrin staining schwann cell processes at the frog neuromuscular junction.
    Werle MJ; Jones MA; Stanco AM
    J Neurobiol; 1999 Jul; 40(1):45-54. PubMed ID: 10398070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo observations of terminal Schwann cells at normal, denervated, and reinnervated mouse neuromuscular junctions.
    O'Malley JP; Waran MT; Balice-Gordon RJ
    J Neurobiol; 1999 Feb; 38(2):270-86. PubMed ID: 10022572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axonal activation-induced calcium transients in myelinating Schwann cells, sources, and mechanisms.
    Lev-Ram V; Ellisman MH
    J Neurosci; 1995 Apr; 15(4):2628-37. PubMed ID: 7722618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB; Delaney KR; Tank DW
    J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous peptidergic modulation of perisynaptic Schwann cells at the frog neuromuscular junction.
    Bourque MJ; Robitaille R
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):197-209. PubMed ID: 9729629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postnatal Restriction of Activity-Induced Ca
    Heredia DJ; Feng CY; Agarwal A; Nennecker K; Hennig GW; Gould TW
    J Neurosci; 2018 Oct; 38(40):8650-8665. PubMed ID: 30143570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo.
    Reddy LV; Koirala S; Sugiura Y; Herrera AA; Ko CP
    Neuron; 2003 Oct; 40(3):563-80. PubMed ID: 14642280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuron-glia interactions: the roles of Schwann cells in neuromuscular synapse formation and function.
    Sugiura Y; Lin W
    Biosci Rep; 2011 Oct; 31(5):295-302. PubMed ID: 21517783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal Schwann cells participate in the competition underlying neuromuscular synapse elimination.
    Smith IW; Mikesh M; Lee Yi; Thompson WJ
    J Neurosci; 2013 Nov; 33(45):17724-36. PubMed ID: 24198364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions.
    Lee YI; Li Y; Mikesh M; Smith I; Nave KA; Schwab MH; Thompson WJ
    Proc Natl Acad Sci U S A; 2016 Jan; 113(4):E479-87. PubMed ID: 26755586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo long-term synaptic plasticity of glial cells.
    Bélair EL; Vallée J; Robitaille R
    J Physiol; 2010 Apr; 588(Pt 7):1039-56. PubMed ID: 20142269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Schwann cell matrix component of neuromuscular junctions and peripheral nerves.
    Astrow SH; Tyner TR; Nguyen MT; Ko CP
    J Neurocytol; 1997 Feb; 26(2):63-75. PubMed ID: 9181481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thickness of the basal lamina at the frog neuromuscular junction.
    Kuffler DP
    J Comp Neurol; 1986 Aug; 250(2):236-44. PubMed ID: 3489015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of frog muscle maintained in organ culture.
    Harris AJ; Miledi R
    J Physiol; 1972 Feb; 221(1):207-26. PubMed ID: 4335913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve terminal withdrawal from rat neuromuscular junctions induced by neuregulin and Schwann cells.
    Trachtenberg JT; Thompson WJ
    J Neurosci; 1997 Aug; 17(16):6243-55. PubMed ID: 9236235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-frequency neuromuscular depression is a consequence of a reduction in nerve terminal Ca2+ currents at mammalian motor nerve endings.
    Silinsky EM
    Anesthesiology; 2013 Aug; 119(2):326-34. PubMed ID: 23535502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Ion currents of a nerve ending in the sartorius muscle of the frog].
    Zefirov AL; Khalilov IA
    Neirofiziologiia; 1985; 17(6):770-9. PubMed ID: 2418373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.