These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 1502190)

  • 1. Chloroplast DNA inversions and the origin of the grass family (Poaceae).
    Doyle JJ; Davis JI; Soreng RJ; Garvin D; Anderson MJ
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7722-6. PubMed ID: 1502190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gondwanan evolution of the grass alliance of families (Poales).
    Bremer K
    Evolution; 2002 Jul; 56(7):1374-87. PubMed ID: 12206239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic affinities of the grasses to other monocots as revealed by molecular analysis of chloroplast DNA.
    Katayama H; Ogihara Y
    Curr Genet; 1996 May; 29(6):572-81. PubMed ID: 8662197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural alterations of the chloroplast genome found in grasses are not common in monocots.
    Katayama H; Ogihara Y
    Curr Genet; 1993 Feb; 23(2):160-5. PubMed ID: 8431958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus.
    Ong HC; Palmer JD
    BMC Evol Biol; 2006 Jul; 6():55. PubMed ID: 16842621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae.
    Doyle JJ; Doyle JL; Ballenger JA; Palmer JD
    Mol Phylogenet Evol; 1996 Apr; 5(2):429-38. PubMed ID: 8728401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes.
    Michelangeli FA; Davis JI; Stevenson DW
    Am J Bot; 2003 Jan; 90(1):93-106. PubMed ID: 21659084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular phylogenetics of Poaceae: an expanded analysis of rbcL sequence data.
    Duvall MR; Morton BR
    Mol Phylogenet Evol; 1996 Apr; 5(2):352-8. PubMed ID: 8728393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slipped-strand mispairing in a plastid gene: rpoC2 in grasses (Poaceae).
    Cummings MP; King LM; Kellogg EA
    Mol Biol Evol; 1994 Jan; 11(1):1-8. PubMed ID: 8121278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences.
    Catalán P; Kellogg EA; Olmstead RG
    Mol Phylogenet Evol; 1997 Oct; 8(2):150-66. PubMed ID: 9299221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses.
    Mian MA; Saha MC; Hopkins AA; Wang ZY
    Genome; 2005 Aug; 48(4):637-47. PubMed ID: 16094432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms.
    Mathews S; Sharrock RA
    Mol Biol Evol; 1996 Oct; 13(8):1141-50. PubMed ID: 8865668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The First Complete Plastid Genome from Joinvilleaceae (J. ascendens; Poales) Shows Unique and Unpredicted Rearrangements.
    Wysocki WP; Burke SV; Swingley WD; Duvall MR
    PLoS One; 2016; 11(9):e0163218. PubMed ID: 27658044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread occurrence of small inversions in the chloroplast genomes of land plants.
    Kim KJ; Lee HL
    Mol Cells; 2005 Feb; 19(1):104-13. PubMed ID: 15750347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.
    Ma PF; Guo ZH; Li DZ
    PLoS One; 2012; 7(1):e30297. PubMed ID: 22272330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hairpins create minute inversions in non-coding regions of chloroplast DNA.
    Kelchner SA; Wendel JF
    Curr Genet; 1996 Aug; 30(3):259-62. PubMed ID: 8753656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CLADISTIC ANALYSIS OF PATTERNS OF ENDOTHECIAL THICKENINGS IN THE POALES/RESTIONALES.
    Manning JC; Linder HP
    Am J Bot; 1990 Feb; 77(2):196-210. PubMed ID: 30139073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots.
    Hsiao C; Chatterton NJ; Asay KH; Jensen KB
    Genome; 1994 Feb; 37(1):112-20. PubMed ID: 8181731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary history of chloridoid grasses estimated from 122 nuclear loci.
    Fisher AE; Hasenstab KM; Bell HL; Blaine E; Ingram AL; Columbus JT
    Mol Phylogenet Evol; 2016 Dec; 105():1-14. PubMed ID: 27554759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phylogeny of the BEP clade in grasses revisited: evidence from the whole-genome sequences of chloroplasts.
    Wu ZQ; Ge S
    Mol Phylogenet Evol; 2012 Jan; 62(1):573-8. PubMed ID: 22093967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.