These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 150233)

  • 41. Inflammatory mediators in alkali-burned corneas: preliminary characterization.
    Elgebaly SA; Downes RT; Bohr M; Forouhar F; O'Rourke J; Kreutzer DL
    Curr Eye Res; 1987 Nov; 6(11):1263-74. PubMed ID: 3427976
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The microtrephine. A new diagnostic tool for obtaining corneal biopsies.
    Schrage NF; Lorenz U; von Fischern T; Reim M
    Acta Ophthalmol (Copenh); 1994 Jun; 72(3):384-7. PubMed ID: 7976274
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Crucial role of corneal lymphangiogenesis for allograft rejection in alkali-burned cornea bed.
    Ling S; Qi C; Li W; Xu J; Kuang W
    Clin Exp Ophthalmol; 2009 Dec; 37(9):874-83. PubMed ID: 20092597
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Experimental study on the treatment of corneal melting after alkali burn with GM 6001].
    Liu H; Zhang W; Pan Z; Wu Y
    Zhonghua Yan Ke Za Zhi; 2002 Sep; 38(9):539-42. PubMed ID: 12410973
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamics of the expression of cytoskeleton components and adherens molecules by fibroblastic cells in alkali-burned and lacerated corneas.
    Ishizaki M; Wakamatsu K; Matsunami T; Yamanaka N; Saiga T; Shimizu Y; Zhu G; Kao WW
    Exp Eye Res; 1994 Nov; 59(5):537-49. PubMed ID: 9492755
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Eicosanoid modulation and epithelial wound healing kinetics of the alkali-burned cornea.
    Ormerod LD; Garsd A; Abelson MB; Kenyon KR
    J Ocul Pharmacol; 1992; 8(1):53-8. PubMed ID: 1328428
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Collagen shields exacerbate ulceration of alkali-burned rabbit corneas.
    Wentworth JS; Paterson CA; Wells JT; Tilki N; Gray RS; McCartney MD
    Arch Ophthalmol; 1993 Mar; 111(3):389-92. PubMed ID: 8447754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased cytochrome oxidase activity in alkali-burned corneas.
    Hayashi K; Kenyon KR
    Curr Eye Res; 1988 Feb; 7(2):131-8. PubMed ID: 2836131
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of dimethyl sulfoxide on a model of corneal alkali injury.
    Skrypuch OW; Tokarewicz AC; Willis NR
    Can J Ophthalmol; 1987 Feb; 22(1):17-20. PubMed ID: 3815150
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Distribution of the 70kD stress protein in corneas with alkali burns].
    Yamada K; Yamaguchi K; Takeda Y; Yamaguchi K; Tamai M
    Nippon Ganka Gakkai Zasshi; 1994 Nov; 98(11):1056-60. PubMed ID: 7825496
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Epidermal growth factor in alkali-burned corneal epithelial wound healing.
    Singh G; Foster CS
    Am J Ophthalmol; 1987 Jun; 103(6):802-7. PubMed ID: 3496008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of NADPH oxidases in alkali burn-induced corneal injury.
    Gu XJ; Liu X; Chen YY; Zhao Y; Xu M; Han XJ; Liu QP; Yi JL; Li JM
    Int J Mol Med; 2016 Jul; 38(1):75-82. PubMed ID: 27221536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Mechanism of keratinocyte growth factor-2 accelerating corneal epithelial wound healing on rabbit alkali burned cornea].
    Liu L; Li YP; Huang SQ; Lin JX; Zhang WX
    Zhonghua Yan Ke Za Zhi; 2005 Apr; 41(4):364-8. PubMed ID: 15924701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Implantation of PHEMA keratoprostheses after alkali burns in rabbit eyes.
    Hicks CR; Vijayasekaran S; Chirila TV; Platten ST; Crawford GJ; Constable IJ
    Cornea; 1998 May; 17(3):301-8. PubMed ID: 9603387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Collagenolytic activity of alkali-burned corneas.
    Brown SI; Weller CA; Wassermann HE
    Arch Ophthalmol; 1969 Mar; 81(3):370-3. PubMed ID: 5774296
    [No Abstract]   [Full Text] [Related]  

  • 56. Dynamics of corneal epithelial healing after an alkali burn. A statistical analysis.
    Ormerod LD; Garsd A; Reddy CV; Gomes SA; Abelson MB; Kenyon KR
    Invest Ophthalmol Vis Sci; 1989 Aug; 30(8):1784-93. PubMed ID: 2759793
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The enzymatic activities in the alkali-burnt rabbit cornea.
    Chayakul V; Reim M
    Graefes Arch Clin Exp Ophthalmol; 1982; 218(3):145-8. PubMed ID: 7095440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface.
    Cejkova J; Trosan P; Cejka C; Lencova A; Zajicova A; Javorkova E; Kubinova S; Sykova E; Holan V
    Exp Eye Res; 2013 Nov; 116():312-23. PubMed ID: 24145108
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The corneal epithelium basement membrane complexes after alkali burn: an ultrastructural study.
    Gartaganis SP; Margaritis LH; Koliopoulos JX
    Ann Ophthalmol; 1987 Jul; 19(7):263-8. PubMed ID: 3631838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of different biomedical membranes on alkali-burned cornea.
    Du LQ; Wu XY; Li MC; Wang SG; Pang KP
    Ophthalmic Res; 2008 Oct; 40(6):282-90. PubMed ID: 18463426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.