These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15023994)

  • 21. New insight into long-range nonadditivity within protein double-mutant cycles.
    Istomin AY; Gromiha MM; Vorov OK; Jacobs DJ; Livesay DR
    Proteins; 2008 Feb; 70(3):915-24. PubMed ID: 17803237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary conservation of the folding nucleus.
    Mirny L; Shakhnovich E
    J Mol Biol; 2001 Apr; 308(2):123-9. PubMed ID: 11327757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.
    Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relation between protein stability, evolution and structure, as probed by carboxylic acid mutations.
    Godoy-Ruiz R; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2004 Feb; 336(2):313-8. PubMed ID: 14757046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of coevolving residues and coevolution potentials emphasizing structure, bond formation and catalytic coordination in protein evolution.
    Little DY; Chen L
    PLoS One; 2009; 4(3):e4762. PubMed ID: 19274093
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary coupling analysis identifies the impact of disease-associated variants at less-conserved sites.
    Kim D; Han SK; Lee K; Kim I; Kong J; Kim S
    Nucleic Acids Res; 2019 Sep; 47(16):e94. PubMed ID: 31199866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond Thermodynamic Constraints: Evolutionary Sampling Generates Realistic Protein Sequence Variation.
    Jiang Q; Teufel AI; Jackson EL; Wilke CO
    Genetics; 2018 Apr; 208(4):1387-1395. PubMed ID: 29382650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting functionally important residues from sequence conservation.
    Capra JA; Singh M
    Bioinformatics; 2007 Aug; 23(15):1875-82. PubMed ID: 17519246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Origins of coevolution between residues distant in protein 3D structures.
    Anishchenko I; Ovchinnikov S; Kamisetty H; Baker D
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9122-9127. PubMed ID: 28784799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A thermodynamic model of protein structure evolution explains empirical amino acid substitution matrices.
    Norn C; André I; Theobald DL
    Protein Sci; 2021 Oct; 30(10):2057-2068. PubMed ID: 34218472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coevolved residues and the functional association for intrinsically disordered proteins.
    Jeong CS; Kim D
    Pac Symp Biocomput; 2012; ():140-51. PubMed ID: 22174270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of conservation on calculations of amino acid covariance in multiple sequence alignments.
    Fodor AA; Aldrich RW
    Proteins; 2004 Aug; 56(2):211-21. PubMed ID: 15211506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular evolution of protein conformational changes revealed by a network of evolutionarily coupled residues.
    Jeon J; Nam HJ; Choi YS; Yang JS; Hwang J; Kim S
    Mol Biol Evol; 2011 Sep; 28(9):2675-85. PubMed ID: 21470969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integration of evolutionary features for the identification of functionally important residues in major facilitator superfamily transporters.
    Jeon J; Yang JS; Kim S
    PLoS Comput Biol; 2009 Oct; 5(10):e1000522. PubMed ID: 19798434
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inferring property selection pressure from positional residue conservation.
    Hoberman R; Klein-Seetharaman J; Rosenfeld R
    Appl Bioinformatics; 2004; 3(2-3):167-79. PubMed ID: 15693742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Residues participating in the protein folding nucleus do not exhibit preferential evolutionary conservation.
    Larson SM; Ruczinski I; Davidson AR; Baker D; Plaxco KW
    J Mol Biol; 2002 Feb; 316(2):225-33. PubMed ID: 11851333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disentangling evolutionary signals: conservation, specificity determining positions and coevolution. Implication for catalytic residue prediction.
    Teppa E; Wilkins AD; Nielsen M; Buslje CM
    BMC Bioinformatics; 2012 Sep; 13():235. PubMed ID: 22978315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust sequence alignment using evolutionary rates coupled with an amino acid substitution matrix.
    Ndhlovu A; Hazelhurst S; Durand PM
    BMC Bioinformatics; 2015 Aug; 16():255. PubMed ID: 26269100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions.
    Gloor GB; Martin LC; Wahl LM; Dunn SD
    Biochemistry; 2005 May; 44(19):7156-65. PubMed ID: 15882054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.