These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 15024063)
1. Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity. Niimi A; Limsirichaikul S; Yoshida S; Iwai S; Masutani C; Hanaoka F; Kool ET; Nishiyama Y; Suzuki M Mol Cell Biol; 2004 Apr; 24(7):2734-46. PubMed ID: 15024063 [TBL] [Abstract][Full Text] [Related]
2. Unlocking the steric gate of DNA polymerase η leads to increased genomic instability in Saccharomyces cerevisiae. Donigan KA; Cerritelli SM; McDonald JP; Vaisman A; Crouch RJ; Woodgate R DNA Repair (Amst); 2015 Nov; 35():1-12. PubMed ID: 26340535 [TBL] [Abstract][Full Text] [Related]
3. Antimutator alleles of yeast DNA polymerase gamma modulate the balance between DNA synthesis and excision. Foury F; Szczepanowska K PLoS One; 2011; 6(11):e27847. PubMed ID: 22114710 [TBL] [Abstract][Full Text] [Related]
4. PCNA mono-ubiquitination and activation of translesion DNA polymerases by DNA polymerase {alpha}. Suzuki M; Niimi A; Limsirichaikul S; Tomida S; Miao Huang Q; Izuta S; Usukura J; Itoh Y; Hishida T; Akashi T; Nakagawa Y; Kikuchi A; Pavlov Y; Murate T; Takahashi T J Biochem; 2009 Jul; 146(1):13-21. PubMed ID: 19279190 [TBL] [Abstract][Full Text] [Related]
5. Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta. McCulloch SD; Wood A; Garg P; Burgers PM; Kunkel TA Biochemistry; 2007 Jul; 46(30):8888-96. PubMed ID: 17608453 [TBL] [Abstract][Full Text] [Related]
6. Biochemical analysis of active site mutations of human polymerase η. Suarez SC; Beardslee RA; Toffton SM; McCulloch SD Mutat Res; 2013; 745-746():46-54. PubMed ID: 23499771 [TBL] [Abstract][Full Text] [Related]
7. DNA binding properties of human DNA polymerase eta: implications for fidelity and polymerase switching of translesion synthesis. Kusumoto R; Masutani C; Shimmyo S; Iwai S; Hanaoka F Genes Cells; 2004 Dec; 9(12):1139-50. PubMed ID: 15569147 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic switching for efficient and accurate translesion DNA replication. McCulloch SD; Kokoska RJ; Chilkova O; Welch CM; Johansson E; Burgers PM; Kunkel TA Nucleic Acids Res; 2004; 32(15):4665-75. PubMed ID: 15333698 [TBL] [Abstract][Full Text] [Related]
9. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae. Chatterjee N; Pabla R; Siede W Biochem Biophys Res Commun; 2013 Feb; 431(2):270-3. PubMed ID: 23313845 [TBL] [Abstract][Full Text] [Related]
10. Polymerization past the N2-isopropylguanine and the N6-isopropyladenine DNA lesions with the translesion synthesis DNA polymerases eta and iota and the replicative DNA polymerase alpha. Perrino FW; Harvey S; Blans P; Gelhaus S; Lacourse WR; Fishbein JC Chem Res Toxicol; 2005 Sep; 18(9):1451-61. PubMed ID: 16167838 [TBL] [Abstract][Full Text] [Related]
11. The N2-ethylguanine and the O6-ethyl- and O6-methylguanine lesions in DNA: contrasting responses from the "bypass" DNA polymerase eta and the replicative DNA polymerase alpha. Perrino FW; Blans P; Harvey S; Gelhaus SL; McGrath C; Akman SA; Jenkins GS; LaCourse WR; Fishbein JC Chem Res Toxicol; 2003 Dec; 16(12):1616-23. PubMed ID: 14680376 [TBL] [Abstract][Full Text] [Related]
12. Mutations in the ubiquitin binding UBZ motif of DNA polymerase eta do not impair its function in translesion synthesis during replication. Acharya N; Brahma A; Haracska L; Prakash L; Prakash S Mol Cell Biol; 2007 Oct; 27(20):7266-72. PubMed ID: 17709386 [TBL] [Abstract][Full Text] [Related]
13. The carboxyl-terminal extension on fungal mitochondrial DNA polymerases: identification of a critical region of the enzyme from Saccharomyces cerevisiae. Young MJ; Theriault SS; Li M; Court DA Yeast; 2006 Jan; 23(2):101-16. PubMed ID: 16491467 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of DNA polymerase zeta reduces the mitochondrial mutability caused by pathological mutations in DNA polymerase gamma in yeast. Baruffini E; Serafini F; Ferrero I; Lodi T PLoS One; 2012; 7(3):e34322. PubMed ID: 22470557 [TBL] [Abstract][Full Text] [Related]
15. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Prakash S; Johnson RE; Prakash L Annu Rev Biochem; 2005; 74():317-53. PubMed ID: 15952890 [TBL] [Abstract][Full Text] [Related]
16. Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase eta. Washington MT; Johnson RE; Prakash S; Prakash L J Biol Chem; 1999 Dec; 274(52):36835-8. PubMed ID: 10601233 [TBL] [Abstract][Full Text] [Related]
17. UV-induced T-->C transition at a TT photoproduct site is dependent on Saccharomyces cerevisiae polymerase eta in vivo. Zhang H; Siede W Nucleic Acids Res; 2002 Mar; 30(5):1262-7. PubMed ID: 11861920 [TBL] [Abstract][Full Text] [Related]
18. The Gly-952 residue of Saccharomyces cerevisiae DNA polymerase alpha is important in discriminating correct deoxyribonucleotides from incorrect ones. Limsirichaikul S; Ogawa M; Niimi A; Iwai S; Murate T; Yoshida S; Suzuki M J Biol Chem; 2003 May; 278(21):19079-86. PubMed ID: 12637558 [TBL] [Abstract][Full Text] [Related]
19. Thymine-thymine dimer bypass by yeast DNA polymerase zeta. Nelson JR; Lawrence CW; Hinkle DC Science; 1996 Jun; 272(5268):1646-9. PubMed ID: 8658138 [TBL] [Abstract][Full Text] [Related]
20. Mutator effects of overproducing DNA polymerase eta (Rad30) and its catalytically inactive variant in yeast. Pavlov YI; Nguyen D; Kunkel TA Mutat Res; 2001 Jul; 478(1-2):129-39. PubMed ID: 11406177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]