These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 15024063)
21. The active site residues Gln55 and Arg73 play a key role in DNA damage bypass by S. cerevisiae Pol η. Boldinova EO; Ignatov A; Kulbachinskiy A; Makarova AV Sci Rep; 2018 Jul; 8(1):10314. PubMed ID: 29985422 [TBL] [Abstract][Full Text] [Related]
22. Yeast and human translesion DNA synthesis polymerases: expression, purification, and biochemical characterization. Johnson RE; Prakash L; Prakash S Methods Enzymol; 2006; 408():390-407. PubMed ID: 16793382 [TBL] [Abstract][Full Text] [Related]
23. Regulation of B family DNA polymerase fidelity by a conserved active site residue: characterization of M644W, M644L and M644F mutants of yeast DNA polymerase epsilon. Pursell ZF; Isoz I; Lundström EB; Johansson E; Kunkel TA Nucleic Acids Res; 2007; 35(9):3076-86. PubMed ID: 17452367 [TBL] [Abstract][Full Text] [Related]
24. Structure of the catalytic core of S. cerevisiae DNA polymerase eta: implications for translesion DNA synthesis. Trincao J; Johnson RE; Escalante CR; Prakash S; Prakash L; Aggarwal AK Mol Cell; 2001 Aug; 8(2):417-26. PubMed ID: 11545743 [TBL] [Abstract][Full Text] [Related]
25. A role for yeast and human translesion synthesis DNA polymerases in promoting replication through 3-methyl adenine. Johnson RE; Yu SL; Prakash S; Prakash L Mol Cell Biol; 2007 Oct; 27(20):7198-205. PubMed ID: 17698580 [TBL] [Abstract][Full Text] [Related]
26. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain. Pustovalova Y; Maciejewski MW; Korzhnev DM J Mol Biol; 2013 Sep; 425(17):3091-105. PubMed ID: 23747975 [TBL] [Abstract][Full Text] [Related]
27. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta. Johnson RE; Prakash S; Prakash L Science; 1999 Feb; 283(5404):1001-4. PubMed ID: 9974380 [TBL] [Abstract][Full Text] [Related]
28. The polymerase eta translesion synthesis DNA polymerase acts independently of the mismatch repair system to limit mutagenesis caused by 7,8-dihydro-8-oxoguanine in yeast. Mudrak SV; Welz-Voegele C; Jinks-Robertson S Mol Cell Biol; 2009 Oct; 29(19):5316-26. PubMed ID: 19635811 [TBL] [Abstract][Full Text] [Related]
29. Roles of the polymerase and BRCT domains of Rev1 protein in translesion DNA synthesis in yeast in vivo. Otsuka C; Kunitomi N; Iwai S; Loakes D; Negishi K Mutat Res; 2005 Oct; 578(1-2):79-87. PubMed ID: 15896814 [TBL] [Abstract][Full Text] [Related]
30. The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ. Tellier-Lebegue C; Dizet E; Ma E; Veaute X; Coïc E; Charbonnier JB; Maloisel L PLoS Genet; 2017 Dec; 13(12):e1007119. PubMed ID: 29281621 [TBL] [Abstract][Full Text] [Related]
31. Evidence that DNA polymerase δ proofreads errors made by DNA polymerase α across the Saccharomyces cerevisiae nuclear genome. Marks SA; Zhou ZX; Lujan SA; Burkholder AB; Kunkel TA DNA Repair (Amst); 2024 Nov; 143():103768. PubMed ID: 39332392 [TBL] [Abstract][Full Text] [Related]
32. Mismatch extension ability of yeast and human DNA polymerase eta. Washington MT; Johnson RE; Prakash S; Prakash L J Biol Chem; 2001 Jan; 276(3):2263-6. PubMed ID: 11054429 [TBL] [Abstract][Full Text] [Related]
33. Translesion synthesis DNA polymerase η exhibits a specific RNA extension activity and a transcription-associated function. Gali VK; Balint E; Serbyn N; Frittmann O; Stutz F; Unk I Sci Rep; 2017 Oct; 7(1):13055. PubMed ID: 29026143 [TBL] [Abstract][Full Text] [Related]
34. Involvement of the essential yeast DNA polymerases in induced gene conversion. Hałas A; Ciesielski A; Zuk J Acta Biochim Pol; 1999; 46(4):862-72. PubMed ID: 10824853 [TBL] [Abstract][Full Text] [Related]
35. Amino acid substitutions at conserved tyrosine 52 alter fidelity and bypass efficiency of human DNA polymerase eta. Glick E; Chau JS; Vigna KL; McCulloch SD; Adman ET; Kunkel TA; Loeb LA J Biol Chem; 2003 May; 278(21):19341-6. PubMed ID: 12644469 [TBL] [Abstract][Full Text] [Related]
36. Replication of a cis-syn thymine dimer at atomic resolution. Ling H; Boudsocq F; Plosky BS; Woodgate R; Yang W Nature; 2003 Aug; 424(6952):1083-7. PubMed ID: 12904819 [TBL] [Abstract][Full Text] [Related]
37. Mitochondrial DNA defects in Saccharomyces cerevisiae caused by functional interactions between DNA polymerase gamma mutations associated with disease in human. Baruffini E; Ferrero I; Foury F Biochim Biophys Acta; 2007 Dec; 1772(11-12):1225-35. PubMed ID: 17980715 [TBL] [Abstract][Full Text] [Related]
38. Mechanism of efficient and accurate nucleotide incorporation opposite 7,8-dihydro-8-oxoguanine by Saccharomyces cerevisiae DNA polymerase eta. Carlson KD; Washington MT Mol Cell Biol; 2005 Mar; 25(6):2169-76. PubMed ID: 15743815 [TBL] [Abstract][Full Text] [Related]
39. Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae. Kochenova OV; Soshkina JV; Stepchenkova EI; Inge-Vechtomov SG; Shcherbakova PV Biochemistry (Mosc); 2011 Jan; 76(1):49-60. PubMed ID: 21568839 [TBL] [Abstract][Full Text] [Related]
40. NGS-based analysis of base-substitution signatures created by yeast DNA polymerase eta and zeta on undamaged and abasic DNA templates in vitro. Chen Y; Sugiyama T DNA Repair (Amst); 2017 Nov; 59():34-43. PubMed ID: 28946034 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]