These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 15024067)

  • 21. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.
    Chen YC; Kenworthy J; Gabrielse C; Hänni C; Zegerman P; Weinreich M
    Genetics; 2013 Jun; 194(2):389-401. PubMed ID: 23564203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the Saccharomyces cerevisiae Rad53 checkpoint kinase in signaling double-strand breaks during the meiotic cell cycle.
    Cartagena-Lirola H; Guerini I; Manfrini N; Lucchini G; Longhese MP
    Mol Cell Biol; 2008 Jul; 28(14):4480-93. PubMed ID: 18505828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE; Gilbert CS; Green CM; Lowndes NF
    EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage.
    O'Neill BM; Szyjka SJ; Lis ET; Bailey AO; Yates JR; Aparicio OM; Romesberg FE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9290-5. PubMed ID: 17517611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
    Travesa A; Duch A; Quintana DG
    J Biol Chem; 2008 Jun; 283(25):17123-30. PubMed ID: 18441009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surprising complexity of the Asf1 histone chaperone-Rad53 kinase interaction.
    Jiao Y; Seeger K; Lautrette A; Gaubert A; Mousson F; Guerois R; Mann C; Ochsenbein F
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2866-71. PubMed ID: 22323608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1.
    Zhao X; Rothstein R
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3746-51. PubMed ID: 11904430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast.
    Ferrari M; Nachimuthu BT; Donnianni RA; Klein H; Pellicioli A
    DNA Repair (Amst); 2013 May; 12(5):347-55. PubMed ID: 23473644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual functions of Mdt1 in genome maintenance and cell integrity pathways in Saccharomyces cerevisiae.
    Traven A; Lo TL; Pike BL; Friesen H; Guzzo J; Andrews B; Heierhorst J
    Yeast; 2010 Jan; 27(1):41-52. PubMed ID: 19894211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two distinct pathways for inhibiting pds1 ubiquitination in response to DNA damage.
    Agarwal R; Tang Z; Yu H; Cohen-Fix O
    J Biol Chem; 2003 Nov; 278(45):45027-33. PubMed ID: 12947083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways.
    Sanchez Y; Desany BA; Jones WJ; Liu Q; Wang B; Elledge SJ
    Science; 1996 Jan; 271(5247):357-60. PubMed ID: 8553072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast.
    Gangavarapu V; Santa Maria SR; Prakash S; Prakash L
    mBio; 2011; 2(3):e00079-11. PubMed ID: 21586645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation.
    Schleker T; Shimada K; Sack R; Pike BL; Gasser SM
    Cell Cycle; 2010 Jan; 9(2):350-63. PubMed ID: 20046099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA-repair scaffolds dampen checkpoint signalling by counteracting the adaptor Rad9.
    Ohouo PY; Bastos de Oliveira FM; Liu Y; Ma CJ; Smolka MB
    Nature; 2013 Jan; 493(7430):120-4. PubMed ID: 23160493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling.
    Lee SJ; Schwartz MF; Duong JK; Stern DF
    Mol Cell Biol; 2003 Sep; 23(17):6300-14. PubMed ID: 12917350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An FHA domain-mediated protein interaction network of Rad53 reveals its role in polarized cell growth.
    Smolka MB; Chen SH; Maddox PS; Enserink JM; Albuquerque CP; Wei XX; Desai A; Kolodner RD; Zhou H
    J Cell Biol; 2006 Dec; 175(5):743-53. PubMed ID: 17130285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phospho-Priming Confers Functionally Relevant Specificities for Rad53 Kinase Autophosphorylation.
    Chen ES; Weng JH; Chen YH; Wang SC; Liu XX; Huang WC; Matsui T; Kawano Y; Liao JH; Lim LH; Bessho Y; Huang KF; Wu WJ; Tsai MD
    Biochemistry; 2017 Sep; 56(38):5112-5124. PubMed ID: 28858528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint.
    Sun Z; Hsiao J; Fay DS; Stern DF
    Science; 1998 Jul; 281(5374):272-4. PubMed ID: 9657725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of the budding yeast securin Pds1 but not Rad53 correlates with double-strand break-associated G2/M cell cycle arrest in a mec1 hypomorphic mutant.
    Sun M; Fasullo M
    Cell Cycle; 2007 Aug; 6(15):1896-902. PubMed ID: 17671432
    [TBL] [Abstract][Full Text] [Related]  

  • 40. G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint.
    Manfrini N; Gobbini E; Baldo V; Trovesi C; Lucchini G; Longhese MP
    Mol Cell Biol; 2012 Dec; 32(24):4971-85. PubMed ID: 23045388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.