These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15024068)

  • 1. Secondary structure as a functional feature in the downstream region of mammalian polyadenylation signals.
    Wu C; Alwine JC
    Mol Cell Biol; 2004 Apr; 24(7):2789-96. PubMed ID: 15024068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionally significant secondary structure of the simian virus 40 late polyadenylation signal.
    Hans H; Alwine JC
    Mol Cell Biol; 2000 Apr; 20(8):2926-32. PubMed ID: 10733596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequences on the 3' side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site.
    Sadofsky M; Alwine JC
    Mol Cell Biol; 1984 Aug; 4(8):1460-8. PubMed ID: 6149460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The secondary structure of the adenovirus-2 L4 polyadenylation domain: evidence for a hairpin structure exposing the AAUAAA signal in its loop.
    Sittler A; Gallinaro H; Jacob M
    J Mol Biol; 1995 May; 248(3):525-40. PubMed ID: 7752222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a stem-loop structure important for polyadenylation at the murine IgM secretory poly(A) site.
    Phillips C; Kyriakopoulou CB; Virtanen A
    Nucleic Acids Res; 1999 Jan; 27(2):429-38. PubMed ID: 9862962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses.
    Schek N; Cooke C; Alwine JC
    Mol Cell Biol; 1992 Dec; 12(12):5386-93. PubMed ID: 1333042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The C proteins of heterogeneous nuclear ribonucleoprotein complexes interact with RNA sequences downstream of polyadenylation cleavage sites.
    Wilusz J; Feig DI; Shenk T
    Mol Cell Biol; 1988 Oct; 8(10):4477-83. PubMed ID: 2847033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of mutations in a simian virus 40 PolyA signal enhancer on green fluorescent protein reporter gene expression.
    Wang HG; Wang XF; Jing XY; Li Z; Zhang Y; Lv ZJ
    Genet Mol Res; 2011 Aug; 10(3):1866-83. PubMed ID: 21948750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ability of the HIV-1 AAUAAA signal to bind polyadenylation factors is controlled by local RNA structure.
    Klasens BI; Thiesen M; Virtanen A; Berkhout B
    Nucleic Acids Res; 1999 Jan; 27(2):446-54. PubMed ID: 9862964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Definition of essential sequences and functional equivalence of elements downstream of the adenovirus E2A and the early simian virus 40 polyadenylation sites.
    Hart RP; McDevitt MA; Ali H; Nevins JR
    Mol Cell Biol; 1985 Nov; 5(11):2975-83. PubMed ID: 3018490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bovine leukemia virus encapsidation signal is composed of RNA secondary structures.
    Mansky LM; Wisniewski RM
    J Virol; 1998 Apr; 72(4):3196-204. PubMed ID: 9525645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location.
    MacDonald CC; Wilusz J; Shenk T
    Mol Cell Biol; 1994 Oct; 14(10):6647-54. PubMed ID: 7935383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of RNA secondary structure on polyadenylation site selection.
    Brown PH; Tiley LS; Cullen BR
    Genes Dev; 1991 Jul; 5(7):1277-84. PubMed ID: 1712333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequences downstream of AAUAAA signals affect pre-mRNA cleavage and polyadenylation in vitro both directly and indirectly.
    Ryner LC; Takagaki Y; Manley JL
    Mol Cell Biol; 1989 Apr; 9(4):1759-71. PubMed ID: 2566911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elements upstream of the AAUAAA within the human immunodeficiency virus polyadenylation signal are required for efficient polyadenylation in vitro.
    Valsamakis A; Schek N; Alwine JC
    Mol Cell Biol; 1992 Sep; 12(9):3699-705. PubMed ID: 1508176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures.
    Zarudnaya MI; Kolomiets IM; Potyahaylo AL; Hovorun DM
    Nucleic Acids Res; 2003 Mar; 31(5):1375-86. PubMed ID: 12595544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro cleavage of the simian virus 40 early polyadenylation site adjacent to a required downstream TG sequence.
    Sperry AO; Berget SM
    Mol Cell Biol; 1986 Dec; 6(12):4734-41. PubMed ID: 3025668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific secondary structures in the capsid-coding region of giardiavirus transcript are required for its translation in Giardia lamblia.
    Garlapati S; Chou J; Wang CC
    J Mol Biol; 2001 May; 308(4):623-38. PubMed ID: 11350165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two regions downstream of AATAAA in the human antithrombin III gene are important for cleavage-polyadenylation.
    Prochownik EV; Smith MJ; Markham A
    J Biol Chem; 1987 Jul; 262(19):9004-10. PubMed ID: 3597404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and position requirements for uridylate-rich downstream elements of polyadenylation signals.
    Chou ZF; Chen F; Wilusz J
    Nucleic Acids Res; 1994 Jul; 22(13):2525-31. PubMed ID: 7518915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.