These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 15025537)
41. Biocompatible superparamagnetic iron oxide nanoparticle dispersions stabilized with poly(ethylene glycol)-oligo(aspartic acid) hybrids. Wan S; Huang J; Guo M; Zhang H; Cao Y; Yan H; Liu K J Biomed Mater Res A; 2007 Mar; 80(4):946-54. PubMed ID: 17083116 [TBL] [Abstract][Full Text] [Related]
42. Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Jansch M; Stumpf P; Graf C; Rühl E; Müller RH Int J Pharm; 2012 May; 428(1-2):125-33. PubMed ID: 22342465 [TBL] [Abstract][Full Text] [Related]
43. Investigation of atherosclerotic plaques with MRI at 3 T using ultrasmall superparamagnetic particles of iron oxide. Priest AN; Ittrich H; Jahntz CL; Kooijman H; Weber C; Adam G Magn Reson Imaging; 2006 Dec; 24(10):1287-93. PubMed ID: 17145399 [TBL] [Abstract][Full Text] [Related]
44. Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Hauger O; Delalande C; Deminière C; Fouqueray B; Ohayon C; Garcia S; Trillaud H; Combe C; Grenier N Radiology; 2000 Dec; 217(3):819-26. PubMed ID: 11110949 [TBL] [Abstract][Full Text] [Related]
45. Imaging of macrophages in soft-tissue infection in rats: relationship between ultrasmall superparamagnetic iron oxide dose and MR signal characteristics. Lutz AM; Weishaupt D; Persohn E; Goepfert K; Froehlich J; Sasse B; Gottschalk J; Marincek B; Kaim AH Radiology; 2005 Mar; 234(3):765-75. PubMed ID: 15665219 [TBL] [Abstract][Full Text] [Related]
46. Superparamagnetic iron oxide particles transactivator protein-fluorescein isothiocyanate particle labeling for in vivo magnetic resonance imaging detection of cell migration: uptake and durability. Kaufman CL; Williams M; Ryle LM; Smith TL; Tanner M; Ho C Transplantation; 2003 Oct; 76(7):1043-6. PubMed ID: 14557750 [TBL] [Abstract][Full Text] [Related]
47. USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Schmitz SA; Winterhalter S; Schiffler S; Gust R; Wagner S; Kresse M; Coupland SE; Semmler W; Wolf KJ Radiology; 2001 Oct; 221(1):237-43. PubMed ID: 11568346 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of lymph node metastases of breast cancer using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. Harada T; Tanigawa N; Matsuki M; Nohara T; Narabayashi I Eur J Radiol; 2007 Sep; 63(3):401-7. PubMed ID: 17398053 [TBL] [Abstract][Full Text] [Related]
49. MRI detection of macrophages labeled using micrometer-sized iron oxide particles. Williams JB; Ye Q; Hitchens TK; Kaufman CL; Ho C J Magn Reson Imaging; 2007 Jun; 25(6):1210-8. PubMed ID: 17520727 [TBL] [Abstract][Full Text] [Related]
50. Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Oude Engberink RD; van der Pol SM; Döpp EA; de Vries HE; Blezer EL Radiology; 2007 May; 243(2):467-74. PubMed ID: 17456871 [TBL] [Abstract][Full Text] [Related]
51. Magnetic resonance of a dextran-coated magnetic fluid intravenously administered in mice. Lacava LM; Lacava ZG; Da Silva MF; Silva O; Chaves SB; Azevedo RB; Pelegrini F; Gansau C; Buske N; Sabolovic D; Morais PC Biophys J; 2001 May; 80(5):2483-6. PubMed ID: 11325747 [TBL] [Abstract][Full Text] [Related]
52. Preparation, characterization and dynamical mechanical properties of dextran-coated iron oxide nanoparticles (DIONPs). Can HK; Kavlak S; ParviziKhosroshahi S; Güner A Artif Cells Nanomed Biotechnol; 2018 Mar; 46(2):421-431. PubMed ID: 28423951 [TBL] [Abstract][Full Text] [Related]
53. Use of superparamagnetic particles for isolation of cells. Kronick P; Gilpin RW J Biochem Biophys Methods; 1986 Jan; 12(1-2):73-80. PubMed ID: 2418094 [TBL] [Abstract][Full Text] [Related]
54. Earthicle: The Design of a Conceptually New Type of Particle. Uskoković V; Pernal S; Wu VM ACS Appl Mater Interfaces; 2017 Jan; 9(2):1305-1321. PubMed ID: 28009506 [TBL] [Abstract][Full Text] [Related]
55. Theory of nonexponential NMR signal decay in liver with iron overload or superparamagnetic iron oxide particles. Jensen JH; Chandra R Magn Reson Med; 2002 Jun; 47(6):1131-8. PubMed ID: 12111959 [TBL] [Abstract][Full Text] [Related]
56. Synthesis and characterization of magnetic dextran nanogel doped with iron oxide nanoparticles as magnetic resonance imaging probe. Su H; Han X; He L; Deng L; Yu K; Jiang H; Wu C; Jia Q; Shan S Int J Biol Macromol; 2019 May; 128():768-774. PubMed ID: 30716377 [TBL] [Abstract][Full Text] [Related]
57. Specific biological responses following dextran-coated ultra-small superparamagnetic particles of iron oxides administration. Jiang Z; Lin C; Liu H; Feng J; Zheng Z; Cai S Nanomedicine (Lond); 2019 Jun; 14(11):1371-1386. PubMed ID: 31215328 [No Abstract] [Full Text] [Related]
58. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging. Osborne EA; Atkins TM; Gilbert DA; Kauzlarich SM; Liu K; Louie AY Nanotechnology; 2012 Jun; 23(21):215602. PubMed ID: 22551699 [TBL] [Abstract][Full Text] [Related]
59. Carboxymethyl-Dextran-Coated Superparamagnetic Iron Oxide Nanoparticles for Drug Delivery: Influence of the Coating Thickness on the Particle Properties. Turrina C; Milani D; Klassen A; Rojas-González DM; Cookman J; Opel M; Sartori B; Mela P; Berensmeier S; Schwaminger SP Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36499070 [TBL] [Abstract][Full Text] [Related]
60. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Berry CC; Wells S; Charles S; Aitchison G; Curtis AS Biomaterials; 2004 Oct; 25(23):5405-13. PubMed ID: 15130725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]