BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15025556)

  • 1. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides.
    Winterbourn CC; Parsons-Mair HN; Gebicki S; Gebicki JM; Davies MJ
    Biochem J; 2004 Jul; 381(Pt 1):241-8. PubMed ID: 15025556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide-mediated formation of tyrosine hydroperoxides and methionine sulfoxide in peptides through radical addition and intramolecular oxygen transfer.
    Nagy P; Kettle AJ; Winterbourn CC
    J Biol Chem; 2009 May; 284(22):14723-33. PubMed ID: 19297319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radical-radical reactions of superoxide: a potential route to toxicity.
    Winterbourn CC; Kettle AJ
    Biochem Biophys Res Commun; 2003 Jun; 305(3):729-36. PubMed ID: 12763053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine.
    Möller MN; Hatch DM; Kim HY; Porter NA
    J Am Chem Soc; 2012 Oct; 134(40):16773-80. PubMed ID: 22989205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactions of superoxide with the myoglobin tyrosyl radical.
    Das AB; Nagy P; Abbott HF; Winterbourn CC; Kettle AJ
    Free Radic Biol Med; 2010 Jun; 48(11):1540-7. PubMed ID: 20211247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid reaction of superoxide with insulin-tyrosyl radicals to generate a hydroperoxide with subsequent glutathione addition.
    Das AB; Nauser T; Koppenol WH; Kettle AJ; Winterbourn CC; Nagy P
    Free Radic Biol Med; 2014 May; 70():86-95. PubMed ID: 24561577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products.
    Carroll L; Pattison DI; Davies JB; Anderson RF; Lopez-Alarcon C; Davies MJ
    Free Radic Biol Med; 2018 Apr; 118():126-136. PubMed ID: 29496618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical and experimental studies of tyrosyl hydroperoxide formation in the presence of H-bond donors.
    Field SM; Villamena FA
    Chem Res Toxicol; 2008 Oct; 21(10):1923-32. PubMed ID: 18816073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of superoxide and tyrosine peroxide as a result of tyrosyl radical scavenging by glutathione.
    Pichorner H; Metodiewa D; Winterbourn CC
    Arch Biochem Biophys; 1995 Nov; 323(2):429-37. PubMed ID: 7487108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloperoxidase-dependent generation of a tyrosine peroxide by neutrophils.
    Winterbourn CC; Pichorner H; Kettle AJ
    Arch Biochem Biophys; 1997 Feb; 338(1):15-21. PubMed ID: 9015382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the free radicals formed in the metmyoglobin-hydrogen peroxide reaction.
    Gunther MR
    Free Radic Biol Med; 2004 Jun; 36(11):1345-54. PubMed ID: 15135170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypochlorite reacts with an organic hydroperoxide forming free radicals, but not singlet oxygen, and thus initiates lipid peroxidation.
    Panasenko OM; Arnhold J; Schiller J
    Biochemistry (Mosc); 1997 Sep; 62(9):951-9. PubMed ID: 9457759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Quantification of Tryptophan- and Tyrosine-derived Hydroperoxides.
    Jayme SB; Prado FM; Massafera MP; Ronsein GE; Di Mascio P
    Photochem Photobiol; 2022 May; 98(3):678-686. PubMed ID: 35363890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation, detection, and quantification of hydroperoxides formed at side-chain and backbone sites on amino acids, peptides, and proteins.
    Morgan PE; Pattison DI; Hawkins CL; Davies MJ
    Free Radic Biol Med; 2008 Nov; 45(9):1279-89. PubMed ID: 18762246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of hydrogen peroxide-induced Cu,Zn-superoxide dismutase-centered radical formation as explored by immuno-spin trapping: the role of copper- and carbonate radical anion-mediated oxidations.
    Ramirez DC; Gomez Mejiba SE; Mason RP
    Free Radic Biol Med; 2005 Jan; 38(2):201-14. PubMed ID: 15607903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of hydroperoxide-induced tyrosyl radicals and lipoxygenase activity in aspirin-treated human prostaglandin H synthase-2.
    Xiao G; Tsai AL; Palmer G; Boyar WC; Marshall PJ; Kulmacz RJ
    Biochemistry; 1997 Feb; 36(7):1836-45. PubMed ID: 9048568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of oxygen, antioxidants, and superoxide radical on tyrosine phenoxyl radical dimerization.
    Hunter EP; Desrosiers MF; Simic MG
    Free Radic Biol Med; 1989; 6(6):581-5. PubMed ID: 2546863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conjugation of glutathione to oxidized tyrosine residues in peptides and proteins.
    Nagy P; Lechte TP; Das AB; Winterbourn CC
    J Biol Chem; 2012 Jul; 287(31):26068-76. PubMed ID: 22648418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone H1- and other protein- and amino acid-hydroperoxides can give rise to free radicals which oxidize DNA.
    Luxford C; Morin B; Dean RT; Davies MJ
    Biochem J; 1999 Nov; 344 Pt 1(Pt 1):125-34. PubMed ID: 10548542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of amino acid, peptide and protein hydroperoxides by reaction with peroxiredoxins 2 and 3.
    Peskin AV; Cox AG; Nagy P; Morgan PE; Hampton MB; Davies MJ; Winterbourn CC
    Biochem J; 2010 Dec; 432(2):313-21. PubMed ID: 20840079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.