These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 15025557)

  • 41. Study of the kinetics of oxidation of monophenols by tyrosinase. The effect of reducers.
    Gukasyan GS
    Biochemistry (Mosc); 2002 Feb; 67(2):277-80. PubMed ID: 11952426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of the amino acid position controlling the different enzymatic activities in walnut tyrosinase isoenzymes (jrPPO1 and jrPPO2).
    Panis F; Rompel A
    Sci Rep; 2020 Jul; 10(1):10813. PubMed ID: 32616720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Catalysis and inactivation of tyrosinase in its action on hydroxyhydroquinone.
    del Mar Garcia-Molina M; Muñoz-Muñoz JL; Berna J; García-Ruiz PA; Rodriguez-Lopez JN; Garcia-Canovas F
    IUBMB Life; 2014 Feb; 66(2):122-7. PubMed ID: 24578277
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxygen Michaelis constants for tyrosinase.
    Rodríguez-López JN; Ros JR; Varón R; García-Cánovas F
    Biochem J; 1993 Aug; 293 ( Pt 3)(Pt 3):859-66. PubMed ID: 8352753
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Increase of human CYP1B1 activities by acidic phospholipids and kinetic deuterium isotope effects on CYP1B1 substrate oxidation.
    Jang HH; Kim SY; Kang JY; Park SH; Ryu SH; Ahn T; Yun CH
    J Biochem; 2012 Nov; 152(5):433-42. PubMed ID: 22888116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic study of the oxidation of 3-hydroxyanisole catalysed by tyrosinase.
    Fenoll LG; Rodríguez-López JN; Varón R; García-Ruiz PA; García-Cánovas F; Tudela J
    Biophys Chem; 2000 Feb; 84(1):65-76. PubMed ID: 10723545
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibitor binding to the binuclear active site of tyrosinase: temperature, pH, and solvent deuterium isotope effects.
    Conrad JS; Dawso SR; Hubbard ER; Meyers TE; Strothkamp KG
    Biochemistry; 1994 May; 33(19):5739-44. PubMed ID: 8180200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetic study of the oxidation of 4-hydroxyanisole catalyzed by tyrosinase.
    Espín JC; Varón R; Tudela J; García-Cánovas F
    Biochem Mol Biol Int; 1997 May; 41(6):1265-76. PubMed ID: 9161722
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic study of the oxidation of quercetin by mushroom tyrosinase.
    Fenoll LG; García-Ruiz PA; Varón R; García-Cánovas F
    J Agric Food Chem; 2003 Dec; 51(26):7781-7. PubMed ID: 14664545
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanistic studies on tyrosinase-catalysed oxidative decarboxylation of 3,4-dihydroxymandelic acid.
    Sugumaran M; Dali H; Semensi V
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):353-7. PubMed ID: 1736884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An approximate analytical solution to the lag period of monophenolase activity of tyrosinase.
    Molina FG; Muñoz JL; Varón R; López JN; Cánovas FG; Tudela J
    Int J Biochem Cell Biol; 2007; 39(1):238-52. PubMed ID: 17010655
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Suicide inactivation of the diphenolase and monophenolase activities of tyrosinase.
    Muñoz-Muñoz JL; Garcia-Molina F; Varon R; Garcia-Ruíz PA; Tudela J; Garcia-Cánovas F; Rodríguez-López JN
    IUBMB Life; 2010 Jul; 62(7):539-47. PubMed ID: 20552645
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative cytotoxicity of phenols in vitro.
    Passi S; Picardo M; Nazzaro-Porro M
    Biochem J; 1987 Jul; 245(2):537-42. PubMed ID: 2822025
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Stability and catalytic properties of o-diphenol oxidase. 1. Oxidation of o-diphenols].
    Butovich IA
    Ukr Biokhim Zh (1978); 1986; 58(1):10-6. PubMed ID: 3080835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes?
    Kampatsikas I; Rompel A
    Chembiochem; 2021 Apr; 22(7):1161-1175. PubMed ID: 33108057
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isotope effects in the tyrosinase catalysed hydroxylation of l-tyrosine methyl derivatives.
    Pająk M; Kańska M
    Isotopes Environ Health Stud; 2018 Oct; 54(5):548-557. PubMed ID: 30081668
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Catalytic properties of an organic solvent-resistant tyrosinase from Streptomyces sp. REN-21 and its high-level production in E. coli.
    Ito M; Inouye K
    J Biochem; 2005 Oct; 138(4):355-62. PubMed ID: 16272129
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antioxidation and tyrosinase inhibition of polyphenolic curcumin analogs.
    Du ZY; Jiang YF; Tang ZK; Mo RQ; Xue GH; Lu YJ; Zheng X; Dong CZ; Zhang K
    Biosci Biotechnol Biochem; 2011; 75(12):2351-8. PubMed ID: 22146732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stereoselective hydrogen abstraction by galactose oxidase.
    Minasian SG; Whittaker MM; Whittaker JW
    Biochemistry; 2004 Nov; 43(43):13683-93. PubMed ID: 15504031
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Steady-state kinetic isotope effects support a complex role of Arg226 in the proposed desulfonation mechanism of alkanesulfonate monooxygenase.
    Robbins JM; Ellis HR
    Biochemistry; 2014 Jan; 53(1):161-8. PubMed ID: 24321058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.