These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 15025858)

  • 21. Cystic fibrosis transmembrane conductance regulator in human muscle: Dysfunction causes abnormal metabolic recovery in exercise.
    Lamhonwah AM; Bear CE; Huan LJ; Kim Chiaw P; Ackerley CA; Tein I
    Ann Neurol; 2010 Jun; 67(6):802-8. PubMed ID: 20517942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose homeostasis and genotype-phenotype interplay in cystic fibrosis patients with CFTR gene deltaF508 mutation.
    Preumont V; Hermans MP; Lebecque P; Buysschaert M
    Diabetes Care; 2007 May; 30(5):1187-92. PubMed ID: 17337503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cystic fibrosis transmembrane conductance regulator in human and mouse red blood cell membranes and its interaction with ecto-apyrase.
    Sterling KM; Shah S; Kim RJ; Johnston NI; Salikhova AY; Abraham EH
    J Cell Biochem; 2004 Apr; 91(6):1174-82. PubMed ID: 15048872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular pathophysiology of cystic fibrosis based on the rescued knockout mouse model.
    Cohen JC; Morrow SL; Cork RJ; Delcarpio JB; Larson JE
    Mol Genet Metab; 1998 Jun; 64(2):108-18. PubMed ID: 9705235
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain-dependent pulmonary gene expression profiles of a cystic fibrosis mouse model.
    Haston CK; Cory S; Lafontaine L; Dorion G; Hallett MT
    Physiol Genomics; 2006 Apr; 25(2):336-45. PubMed ID: 16614460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of cystic fibrosis transmembrane conductance regulator in liver tissue from patients with cystic fibrosis.
    Kinnman N; Lindblad A; Housset C; Buentke E; Scheynius A; Strandvik B; Hultcrantz R
    Hepatology; 2000 Aug; 32(2):334-40. PubMed ID: 10915740
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Parallel improvement of sodium and chloride transport defects by miglustat (n-butyldeoxynojyrimicin) in cystic fibrosis epithelial cells.
    Noël S; Wilke M; Bot AG; De Jonge HR; Becq F
    J Pharmacol Exp Ther; 2008 Jun; 325(3):1016-23. PubMed ID: 18309088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of the amiloride-sensitive epithelial Na+ channel in the pathogenesis and as a therapeutic target for cystic fibrosis lung disease.
    Mall MA
    Exp Physiol; 2009 Feb; 94(2):171-4. PubMed ID: 19060118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Absorption of D-glucose by the small intestine of the human fetus (using brush border membrane vesicles of the jejunum)].
    Iioka H; Moriyama IS; Hino K; Itani Y; Ichijo M
    Nihon Sanka Fujinka Gakkai Zasshi; 1987 Mar; 39(3):347-51. PubMed ID: 3559320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphological changes in the vas deferens and expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in control, deltaF508 and knock-out CFTR mice during postnatal life.
    Reynaert I; Van Der Schueren B; Degeest G; Manin M; Cuppens H; Scholte B; Cassiman JJ
    Mol Reprod Dev; 2000 Feb; 55(2):125-35. PubMed ID: 10618651
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pharmacological characterization of neural mechanisms regulating mucosal ion transport in mouse jejunum.
    Sheldon RJ; Malarchik ME; Fox DA; Burks TF; Porreca F
    J Pharmacol Exp Ther; 1989 May; 249(2):572-82. PubMed ID: 2724141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cystic fibrosis mouse model-dependent intestinal structure and gut microbiome.
    Bazett M; Honeyman L; Stefanov AN; Pope CE; Hoffman LR; Haston CK
    Mamm Genome; 2015 Jun; 26(5-6):222-34. PubMed ID: 25721416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salmonella typhi uses CFTR to enter intestinal epithelial cells.
    Pier GB; Grout M; Zaidi T; Meluleni G; Mueschenborn SS; Banting G; Ratcliff R; Evans MJ; Colledge WH
    Nature; 1998 May; 393(6680):79-82. PubMed ID: 9590693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CFTR is required for cAMP inhibition of intestinal Na+ absorption in a cystic fibrosis mouse model.
    Clarke LL; Harline MC
    Am J Physiol; 1996 Feb; 270(2 Pt 1):G259-67. PubMed ID: 8779967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toll-like receptor-4 genotype influences the survival of cystic fibrosis mice.
    Canale-Zambrano JC; Auger ML; Haston CK
    Am J Physiol Gastrointest Liver Physiol; 2010 Aug; 299(2):G381-90. PubMed ID: 20522639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elevated hepatic SULT1E1 activity in mouse models of cystic fibrosis alters the regulation of estrogen responsive proteins.
    Li L; Falany CN
    J Cyst Fibros; 2007 Jan; 6(1):23-30. PubMed ID: 16798114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Knockout mouse models for intestinal electrolyte transporters and regulatory PDZ adaptors: new insights into cystic fibrosis, secretory diarrhoea and fructose-induced hypertension.
    Seidler U; Singh A; Chen M; Cinar A; Bachmann O; Zheng W; Wang J; Yeruva S; Riederer B
    Exp Physiol; 2009 Feb; 94(2):175-9. PubMed ID: 18931049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of CFTR in the colon.
    Greger R
    Annu Rev Physiol; 2000; 62():467-91. PubMed ID: 10845099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of electrogenic nutrient absorption in the Cftr TgH(neoim)Hgu mouse model.
    Tóth B; Leonhard-Marek S; Hedrich HJ; Breves G
    J Comp Physiol B; 2008 Aug; 178(6):705-12. PubMed ID: 18369642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice.
    Mall M; Grubb BR; Harkema JR; O'Neal WK; Boucher RC
    Nat Med; 2004 May; 10(5):487-93. PubMed ID: 15077107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.