These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 15026120)
1. Patterns of colocalization of neuronal nitric oxide synthase and somatostatin-like immunoreactivity in the mouse hippocampus: quantitative analysis with optical disector. Jinno S; Kosaka T Neuroscience; 2004; 124(4):797-808. PubMed ID: 15026120 [TBL] [Abstract][Full Text] [Related]
2. Quantitative analysis of neuronal nitric oxide synthase-immunoreactive neurons in the mouse hippocampus with optical disector. Jinno S; Aika Y; Fukuda T; Kosaka T J Comp Neurol; 1999 Aug; 410(3):398-412. PubMed ID: 10404408 [TBL] [Abstract][Full Text] [Related]
3. Colocalization of parvalbumin and somatostatin-like immunoreactivity in the mouse hippocampus: quantitative analysis with optical dissector. Jinno S; Kosaka T J Comp Neurol; 2000 Dec; 428(3):377-88. PubMed ID: 11074441 [TBL] [Abstract][Full Text] [Related]
4. Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of hippocampal GABAergic neurons in mice. Jinno S; Kosaka T J Comp Neurol; 2002 Jul; 449(1):1-25. PubMed ID: 12115690 [TBL] [Abstract][Full Text] [Related]
5. Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: a retrograde labeling study. Jinno S; Kosaka T Brain Res; 2002 Aug; 945(2):219-31. PubMed ID: 12126884 [TBL] [Abstract][Full Text] [Related]
6. Patterns of expression of neuropeptides in GABAergic nonprincipal neurons in the mouse hippocampus: Quantitative analysis with optical disector. Jinno S; Kosaka T J Comp Neurol; 2003 Jun; 461(3):333-49. PubMed ID: 12746872 [TBL] [Abstract][Full Text] [Related]
7. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation. Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998 [TBL] [Abstract][Full Text] [Related]
8. Nonprincipal neurons and CA2 pyramidal cells, but not mossy cells are immunoreactive for calcitonin gene-related peptide in the mouse hippocampus. Sakurai O; Kosaka T Brain Res; 2007 Dec; 1186():129-43. PubMed ID: 18005945 [TBL] [Abstract][Full Text] [Related]
9. Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers. Nomura T; Fukuda T; Aika Y; Heizmann CW; Emson PC; Kobayashi T; Kosaka T Brain Res; 1997 Aug; 764(1-2):197-204. PubMed ID: 9295210 [TBL] [Abstract][Full Text] [Related]
10. Electron microscopic immunocytochemical study of the distribution of parvalbumin-containing neurons and axon terminals in the primate dentate gyrus and Ammon's horn. Ribak CE; Seress L; Leranth C J Comp Neurol; 1993 Jan; 327(2):298-321. PubMed ID: 8425946 [TBL] [Abstract][Full Text] [Related]
11. Ultrastructural localization of somatostatin-like immunoreactivity in the rat dentate gyrus. Milner TA; Bacon CE J Comp Neurol; 1989 Dec; 290(4):544-60. PubMed ID: 2613944 [TBL] [Abstract][Full Text] [Related]
12. Distribution of NADPH-diaphorase and expression of nNOS, N-methyl-D-aspartate receptor (NMDAR1) and non-NMDA glutamate receptor (GlutR2) genes in the neurons of the hippocampus after domoic acid-induced lesions in adult rats. Ananth C; Dheen ST; Gopalakrishnakone P; Kaur C Hippocampus; 2003; 13(2):260-72. PubMed ID: 12699333 [TBL] [Abstract][Full Text] [Related]
13. Immunofluorescently labeling glutamic acid decarboxylase 65 coupled with confocal imaging for identifying GABAergic somata in the rat dentate gyrus-A comparison with labeling glutamic acid decarboxylase 67. Wang X; Gao F; Zhu J; Guo E; Song X; Wang S; Zhan RZ J Chem Neuroanat; 2014 Nov; 61-62():51-63. PubMed ID: 25058170 [TBL] [Abstract][Full Text] [Related]
14. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig. Abrahám H; Tóth Z; Seress L Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437 [TBL] [Abstract][Full Text] [Related]
15. Organization of the GABAergic system in the rat hippocampal formation: a quantitative immunocytochemical study. Woodson W; Nitecka L; Ben-Ari Y J Comp Neurol; 1989 Feb; 280(2):254-71. PubMed ID: 2925894 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide-containing pyramidal neurons of the subiculum innervate the CA1 area. Seress L; Abrahám H; Lin H; Totterdell S Exp Brain Res; 2002 Nov; 147(1):38-44. PubMed ID: 12373367 [TBL] [Abstract][Full Text] [Related]
17. Roles of estrogen receptor alpha and androgen receptor in the regulation of neuronal nitric oxide synthase. Scordalakes EM; Shetty SJ; Rissman EF J Comp Neurol; 2002 Nov; 453(4):336-44. PubMed ID: 12389206 [TBL] [Abstract][Full Text] [Related]
18. Morphometric multivariate analysis of GABAergic neurons containing calretinin and neuronal nitric oxide synthase in the mouse hippocampus. Jinno S; Kinukawa N; Kosaka T Brain Res; 2001 May; 900(2):195-204. PubMed ID: 11334798 [TBL] [Abstract][Full Text] [Related]
19. Correlated morphological and chemical phenotyping in myenteric type V neurons of porcine ileum. Brehmer A; Schrödl F; Neuhuber W J Comp Neurol; 2002 Nov; 453(1):1-9. PubMed ID: 12357427 [TBL] [Abstract][Full Text] [Related]
20. Distribution of calbindin-D28k, neuronal nitric oxide synthase, and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in the lateral nucleus of the sheep amygdaloid complex. Bombardi C; Grandis A; Chiocchetti R; Lucchi ML Anat Embryol (Berl); 2006 Nov; 211(6):707-20. PubMed ID: 17047987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]