BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15026243)

  • 1. Effect of synthetic iron colloids on the microbiological NH(4)(+) removal process during groundwater purification.
    Wolthoorn A; Temminghoff EJ; van Riemsdijk WH
    Water Res; 2004 Apr; 38(7):1884-92. PubMed ID: 15026243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of ammonium and phosphate from the supernatant of anaerobically digested waste activated sludge by chemical precipitation.
    Uludag-Demirer S; Othman M
    Bioresour Technol; 2009 Jul; 100(13):3236-44. PubMed ID: 19318246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.
    van Halem D; Olivero S; de Vet WW; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2010 Nov; 44(19):5761-9. PubMed ID: 20573366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cation exchange during subsurface iron removal.
    van Halem D; Moed DH; Verberk JQ; Amy GL; van Dijk JC
    Water Res; 2012 Feb; 46(2):307-15. PubMed ID: 22137449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents.
    Ji MK; Park WB; Khan MA; Abou-Shanab RA; Kim Y; Cho Y; Choi J; Song H; Jeon BH
    J Environ Monit; 2012 Apr; 14(4):1153-8. PubMed ID: 22344042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of biological processes for the removal of arsenic from groundwaters.
    Katsoyiannis IA; Zouboulis AI
    Water Res; 2004 Jan; 38(1):17-26. PubMed ID: 14630099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an attached growth reactor for NH₄-N removal at a drinking water supply system in Kathmandu Valley, Nepal.
    Khanitchaidecha W; Shakya M; Nakano Y; Tanaka Y; Kazama F
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(5):734-43. PubMed ID: 22416868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of iron and manganese using biological roughing up flow filtration technology.
    Pacini VA; María Ingallinella A; Sanguinetti G
    Water Res; 2005 Nov; 39(18):4463-75. PubMed ID: 16225901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic sorption of ammonium by sandy soil in fixed bed columns: Evaluation of equilibrium and non-equilibrium transport processes.
    Jellali S; Diamantopoulos E; Kallali H; Bennaceur S; Anane M; Jedidi N
    J Environ Manage; 2010; 91(4):897-905. PubMed ID: 20034727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal.
    Lo IM; Lam CS; Lai KC
    Water Res; 2006 Feb; 40(3):595-605. PubMed ID: 16406049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial nitrification of ammonium-rich wastewater as pretreatment for anaerobic ammonium oxidation (Anammox) using membrane aeration bioreactor.
    Feng YJ; Tseng SK; Hsia TH; Ho CM; Chou WP
    J Biosci Bioeng; 2007 Sep; 104(3):182-7. PubMed ID: 17964481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of Fe(II), sulphur and phosphate in pilot-scale constructed wetlands treating a sulphate-rich chlorinated hydrocarbon contaminated groundwater.
    Wu S; Chen Z; Braeckevelt M; Seeger EM; Dong R; Kästner M; Paschke H; Hahn A; Kayser G; Kuschk P
    Water Res; 2012 Apr; 46(6):1923-32. PubMed ID: 22289675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of iron(VI) and iron(V) in water and wastewater treatment.
    Sharma VK
    Water Sci Technol; 2004; 49(4):69-74. PubMed ID: 15077950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of iron from groundwater by ash: a systematic study of a traditional method.
    Das B; Hazarika P; Saikia G; Kalita H; Goswami DC; Das HB; Dube SN; Dutta RK
    J Hazard Mater; 2007 Mar; 141(3):834-41. PubMed ID: 16956716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.
    Liu T; Rao P; Mak MS; Wang P; Lo IM
    Water Res; 2009 May; 43(9):2540-8. PubMed ID: 19321187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
    Ciardelli MC; Xu H; Sahai N
    Water Res; 2008 Feb; 42(3):615-24. PubMed ID: 17919678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate.
    Deng Y; Englehardt JD
    J Hazard Mater; 2008 May; 153(1-2):293-9. PubMed ID: 17904285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron.
    Leupin OX; Hug SJ
    Water Res; 2005 May; 39(9):1729-40. PubMed ID: 15899271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonium removal from landfill leachate by anodic oxidation.
    Cabeza A; Urtiaga A; Rivero MJ; Ortiz I
    J Hazard Mater; 2007 Jun; 144(3):715-9. PubMed ID: 17346881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: Implications for groundwater nitrate remediation using permeable reactive barriers.
    Su C; Puls RW
    Chemosphere; 2007 Apr; 67(8):1653-62. PubMed ID: 17257645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.