These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 15026845)

  • 1. A nonlinear circuit architecture for magnetoencephalographic signal analysis.
    Bucolo M; Fortuna L; Frasca M; La Rosa M; Virzì MC; Shannahoff-Khalsa D
    Methods Inf Med; 2004; 43(1):89-93. PubMed ID: 15026845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of mutual information on independent component analysis in EEG/MEG analysis: a simulation study.
    Neumann A; Grosse-Wentrup M; Buss M; Gramann K
    Int J Neurosci; 2008 Nov; 118(11):1534-46. PubMed ID: 18853332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures.
    Jutten C; Karhunen J
    Int J Neural Syst; 2004 Oct; 14(5):267-92. PubMed ID: 15593377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals.
    Barbati G; Porcaro C; Zappasodi F; Rossini PM; Tecchio F
    Clin Neurophysiol; 2004 May; 115(5):1220-32. PubMed ID: 15066548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible nonlinear blind signal separation in the complex domain.
    Vigliano D; Scarpiniti M; Parisi R; Uncini A
    Int J Neural Syst; 2008 Apr; 18(2):105-22. PubMed ID: 18452245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Source-space ICA for MEG source imaging.
    Jonmohamadi Y; Jones RD
    J Neural Eng; 2016 Feb; 13(1):016005. PubMed ID: 26644284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary methods for interpreting brain signals: linear versus nonlinear techniques.
    Bucolo M; Di Grazia F; Fortuna L; Frasca M; Sapuppo F; Shannahoff-Khalsa D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1969-72. PubMed ID: 18002370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Group-level spatial independent component analysis of Fourier envelopes of resting-state MEG data.
    Ramkumar P; Parkkonen L; Hyvärinen A
    Neuroimage; 2014 Feb; 86():480-91. PubMed ID: 24185028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A robust approach to independent component analysis and its application in the analysis of magnetoencephalographic data].
    Wei S; Huang Q; Wang P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):648-52. PubMed ID: 16856408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A K-means multivariate approach for clustering independent components from magnetoencephalographic data.
    Spadone S; de Pasquale F; Mantini D; Della Penna S
    Neuroimage; 2012 Sep; 62(3):1912-23. PubMed ID: 22634861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A semi-parametric hybrid neural model for nonlinear blind signal separation.
    Peng H; Chi Z; Siu W
    Int J Neural Syst; 2000 Apr; 10(2):79-93. PubMed ID: 10939342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. dNSP: a biologically inspired dynamic Neural network approach to Signal Processing.
    Cano-Izquierdo JM; Ibarrola J; Pinzolas M; Almonacid M
    Neural Netw; 2008 Sep; 21(7):1006-19. PubMed ID: 18579344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new concept for separability problems in blind source separation.
    Theis FJ
    Neural Comput; 2004 Sep; 16(9):1827-50. PubMed ID: 15265324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial filtering of MEG signals for user-specified spherical regions.
    Ozkurt TE; Sun M; Jia W; Sclabassi RJ
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2429-38. PubMed ID: 19527953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stiefel-manifold learning by improved rigid-body theory applied to ICA.
    Fiori S; Rossi R
    Int J Neural Syst; 2003 Oct; 13(5):273-90. PubMed ID: 14652870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural-network-based approximate output regulation of discrete-time nonlinear systems.
    Lan W; Huang J
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1196-208. PubMed ID: 17668671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete-time adaptive backstepping nonlinear control via high-order neural networks.
    Alanis AY; Sanchez EN; Loukianov AG
    IEEE Trans Neural Netw; 2007 Jul; 18(4):1185-95. PubMed ID: 17668670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear analysis of brain magnetoencephalographic activity in alzheimer disease patients.
    Otte G
    Acta Neurol Belg; 2007 Sep; 107(3):61-2. PubMed ID: 18072332
    [No Abstract]   [Full Text] [Related]  

  • 19. A signal-processing pipeline for magnetoencephalography resting-state networks.
    Mantini D; Della Penna S; Marzetti L; de Pasquale F; Pizzella V; Corbetta M; Romani GL
    Brain Connect; 2011; 1(1):49-59. PubMed ID: 22432954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental comparison of neural algorithms for independent component analysis and blind separation.
    Giannakopoulos X; Karhunen J; Oja E
    Int J Neural Syst; 1999 Apr; 9(2):99-114. PubMed ID: 10529083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.