These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15027651)

  • 1. Precipitation of heavy metals from landfill leachates by microbially-produced sulphide.
    Möller A; Grahn A; Welander U
    Environ Technol; 2004 Jan; 25(1):69-77. PubMed ID: 15027651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Innovative developments in the selective removal and reuse of heavy metals from wastewaters.
    Veeken AH; Rulkens WH
    Water Sci Technol; 2003; 47(10):9-16. PubMed ID: 12862211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs.
    Jong T; Parry DL
    Water Res; 2003 Aug; 37(14):3379-89. PubMed ID: 12834731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated microbial process for the bioremediation of soil contaminated with toxic metals.
    White C; Sharman AK; Gadd GM
    Nat Biotechnol; 1998 Jun; 16(6):572-5. PubMed ID: 9624690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of landfill leachates and studies on heavy metal removal.
    Ceçen F; Gürsoy G
    J Environ Monit; 2000 Oct; 2(5):436-42. PubMed ID: 11254046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process evaluation for optimization of EDTA use and recovery for heavy metal removal from a contaminated soil.
    Lim TT; Chui PC; Goh KH
    Chemosphere; 2005 Feb; 58(8):1031-40. PubMed ID: 15664611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuation of dissolved heavy metal concentrations in the leachate from anaerobic digestion of municipal solid waste in commercial scale landfill bioreactors: The effect of pH and associated mechanisms.
    Xie S; Ma Y; Strong PJ; Clarke WP
    J Hazard Mater; 2015 Dec; 299():577-83. PubMed ID: 26259097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal removal by combining anaerobic upflow packed bed reactors with water hyacinth ponds.
    Sekomo CB; Kagisha V; Rousseau D; Lens P
    Environ Technol; 2012 Jun; 33(10-12):1455-64. PubMed ID: 22856321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal pollution from Russian landfill leachates and its elimination together with other contaminants.
    Kalyuzhnyi S; Gladchenko M
    Water Sci Technol; 2004; 50(5):51-8. PubMed ID: 15497829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal removal from contaminated sludge for land application: a review.
    Babel S; del Mundo Dacera D
    Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined anaerobic-aerobic treatment of landfill leachates under mesophilic, submesophilic and psychrophilic conditions.
    Kalyuzhnyi S; Gladchenko M; Epov A
    Water Sci Technol; 2003; 48(6):311-8. PubMed ID: 14640233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation and fate of selected heavy metals in a biological wastewater treatment system.
    Chipasa KB
    Waste Manag; 2003; 23(2):135-43. PubMed ID: 12623088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal leaching from aerobic and anaerobic landfill bioreactors of co-disposed municipal solid waste incineration bottom ash and shredded low-organic residues.
    Inanc B; Inoue Y; Yamada M; Ono Y; Nagamori M
    J Hazard Mater; 2007 Mar; 141(3):793-802. PubMed ID: 17030419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different options for metal recovery after sludge decontamination at the Montreal Urban Community wastewater treatment plant.
    Meunier N; Blais JF; Lounès M; Tyagi RD; Sasseville JL
    Water Sci Technol; 2002; 46(10):33-41. PubMed ID: 12479450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of isosaccharinic acid (ISA) on the mobilization of metals in municipal solid waste incineration (MSWI) dry scrubber residue.
    Svensson M; Berg M; Ifwer K; Sjöblom R; Ecke H
    J Hazard Mater; 2007 Jun; 144(1-2):477-84. PubMed ID: 17118536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geochemical reconnaissance of heavy metals in kaolin after electrokinetic remediation.
    Al-Hamdan AZ; Reddy KR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(1):17-33. PubMed ID: 16401568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.