BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 15028688)

  • 1. Hydrogen peroxide production in Streptococcus pyogenes: involvement of lactate oxidase and coupling with aerobic utilization of lactate.
    Seki M; Iida K; Saito M; Nakayama H; Yoshida S
    J Bacteriol; 2004 Apr; 186(7):2046-51. PubMed ID: 15028688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examination of Lactobacillus plantarum lactate metabolism side effects in relation to the modulation of aeration parameters.
    Quatravaux S; Remize F; Bryckaert E; Colavizza D; Guzzo J
    J Appl Microbiol; 2006 Oct; 101(4):903-12. PubMed ID: 16968302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted action of lactate oxidase and pyruvate oxidase in aerobic growth of Streptococcus pneumoniae: role of lactate as an energy source.
    Taniai H; Iida K; Seki M; Saito M; Shiota S; Nakayama H; Yoshida S
    J Bacteriol; 2008 May; 190(10):3572-9. PubMed ID: 18344365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen Peroxide Production of Group A Streptococci (GAS) is emm-Type Dependent and Increased at Low Temperatures.
    Menschner L; Falke U; Konrad P; Berner R; Toepfner N
    Curr Microbiol; 2019 Jun; 76(6):698-705. PubMed ID: 30955044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of NADH oxidase to aerobic metabolism of Streptococcus pyogenes.
    Gibson CM; Mallett TC; Claiborne A; Caparon MG
    J Bacteriol; 2000 Jan; 182(2):448-55. PubMed ID: 10629192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactate catabolism by enzyme-loaded red blood cells.
    Garin M; Rossi L; Luque J; Magnani M
    Biotechnol Appl Biochem; 1995 Dec; 22(3):295-303. PubMed ID: 8573290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Characterization of hydrogen peroxide production by a novel oral streptococci, S. oligofermentans isolated from human oral cavity].
    Chen W; Tong HC; Dong XZ
    Wei Sheng Wu Xue Bao; 2006 Oct; 46(5):820-2. PubMed ID: 17172036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological and Chemical Adaptation to Endogenous Hydrogen Peroxide Production in
    Lisher JP; Tsui HT; Ramos-Montañez S; Hentchel KL; Martin JE; Trinidad JC; Winkler ME; Giedroc DP
    mSphere; 2017; 2(1):. PubMed ID: 28070562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of M protein production with those factors found to influence growth and substrate utilization of Streptococcus pyogenes.
    Pine L; Reeves MW
    Infect Immun; 1972 May; 5(5):668-80. PubMed ID: 4564878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function of the pyruvate oxidase-lactate oxidase cascade in interspecies competition between Streptococcus oligofermentans and Streptococcus mutans.
    Liu L; Tong H; Dong X
    Appl Environ Microbiol; 2012 Apr; 78(7):2120-7. PubMed ID: 22287002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen utilization by Lactobacillus plantarum. I. Oxygen consuming reactions.
    Götz F; Sedewitz B; Elstner EF
    Arch Microbiol; 1980 Apr; 125(3):209-14. PubMed ID: 7377904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii.
    Takahashi N; Yamada T
    Oral Microbiol Immunol; 1996 Jun; 11(3):193-8. PubMed ID: 8941775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of fermentation products and extracellular protease during anaerobic growth of Bacillus licheniformis in chemostat and batch-culture.
    Bulthuis BA; Rommens C; Koningstein GM; Stouthamer AH; van Verseveld HW
    Antonie Van Leeuwenhoek; 1991; 60(3-4):355-71. PubMed ID: 1807202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyruvate flux distribution in NADH-oxidase-overproducing Lactococcus lactis strain as a function of culture conditions.
    Lopez de Felipe F; Hugenholtz J
    FEMS Microbiol Lett; 1999 Oct; 179(2):461-6. PubMed ID: 10518751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon isotope effects on the decarboxylation of carboxylic acids. Comparison of the lactate oxidase reaction and the degradation of pyruvate by H2O2.
    Melzer E; Schmidt HL
    Biochem J; 1988 Jun; 252(3):913-5. PubMed ID: 3421932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on the lactate oxidase producing conditions by Edwardsiella tarda].
    Xu P; Ma C; Qi Q; Shen Y; Qu Y
    Wei Sheng Wu Xue Bao; 1999 Apr; 39(2):137-40. PubMed ID: 12555418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress.
    Marty-Teysset C; de la Torre F; Garel J
    Appl Environ Microbiol; 2000 Jan; 66(1):262-7. PubMed ID: 10618234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria.
    Nishiyama Y; Massey V; Takeda K; Kawasaki S; Sato J; Watanabe T; Niimura Y
    J Bacteriol; 2001 Apr; 183(8):2431-8. PubMed ID: 11274101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H(2)O(2)-nonproducing Streptococcus pyogenes strains: survival in stationary phase and virulence in chronic granulomatous disease.
    Saito M; Ohga S; Endoh M; Nakayama H; Mizunoe Y; Hara T; Yoshida SI
    Microbiology (Reading); 2001 Sep; 147(Pt 9):2469-2477. PubMed ID: 11535787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.