BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 15028754)

  • 1. An outer segment localization signal at the C terminus of the photoreceptor-specific retinol dehydrogenase.
    Luo W; Marsh-Armstrong N; Rattner A; Nathans J
    J Neurosci; 2004 Mar; 24(11):2623-32. PubMed ID: 15028754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol.
    Rattner A; Smallwood PM; Nathans J
    J Biol Chem; 2000 Apr; 275(15):11034-43. PubMed ID: 10753906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of an outer segment targeting signal in the COOH terminus of rhodopsin using transgenic Xenopus laevis.
    Tam BM; Moritz OL; Hurd LB; Papermaster DS
    J Cell Biol; 2000 Dec; 151(7):1369-80. PubMed ID: 11134067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional aspects of 17beta-hydroxysteroid dehydrogenase 1 determined by comparison to a closely related retinol dehydrogenase.
    Mindnich R; Adamski J
    J Steroid Biochem Mol Biol; 2007 May; 104(3-5):334-9. PubMed ID: 17467981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of additional outer segment targeting signals in zebrafish rod opsin.
    Fang X; Peden AA; van Eeden FJM; Malicki JJ
    J Cell Sci; 2021 Mar; 134(6):. PubMed ID: 33589494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular framework of steroid/retinoid discrimination in 17beta-hydroxysteroid dehydrogenase type 1 and photoreceptor-associated retinol dehydrogenase.
    Haller F; Moman E; Hartmann RW; Adamski J; Mindnich R
    J Mol Biol; 2010 Jun; 399(2):255-67. PubMed ID: 20382160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding.
    Ritter LM; Khattree N; Tam B; Moritz OL; Schmitz F; Goldberg AF
    J Neurosci; 2011 Aug; 31(31):11231-43. PubMed ID: 21813684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinol dehydrogenase from bovine retinal rod outer segments. Kinetic mechanism of the solubilized enzyme.
    Nicotra C; Livrea MA
    J Biol Chem; 1982 Oct; 257(19):11836-41. PubMed ID: 6749847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The GAFa domain of phosphodiesterase-6 contains a rod outer segment localization signal.
    Cheguru P; Zhang Z; Artemyev NO
    J Neurochem; 2014 Apr; 129(2):256-63. PubMed ID: 24147783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of NDRG1 family proteins on photoreceptor outer segment morphology in zebrafish.
    Takita S; Wada Y; Kawamura S
    Sci Rep; 2016 Nov; 6():36590. PubMed ID: 27811999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyceraldehyde-3-phosphate dehydrogenase is a major protein associated with the plasma membrane of retinal photoreceptor outer segments.
    Hsu SC; Molday RS
    J Biol Chem; 1990 Aug; 265(22):13308-13. PubMed ID: 2376595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones.
    Moritz OL; Peck A; Tam BM
    Gene; 2002 Oct; 298(2):173-82. PubMed ID: 12426105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration.
    Lin-Jones J; Parker E; Wu M; Knox BE; Burnside B
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3614-21. PubMed ID: 12882815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular characterization of a novel short-chain dehydrogenase/reductase that reduces all-trans-retinal.
    Haeseleer F; Huang J; Lebioda L; Saari JC; Palczewski K
    J Biol Chem; 1998 Aug; 273(34):21790-9. PubMed ID: 9705317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting of mouse guanylate cyclase 1 (Gucy2e) to Xenopus laevis rod outer segments.
    Karan S; Tam BM; Moritz OL; Baehr W
    Vision Res; 2011 Nov; 51(21-22):2304-11. PubMed ID: 21945483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The N-terminus of retinol dehydrogenase type 1 signals cytosolic orientation in the microsomal membrane.
    Wang J; Bongianni JK; Napoli JL
    Biochemistry; 2001 Oct; 40(42):12533-40. PubMed ID: 11601977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.
    Morris AC; Schroeter EH; Bilotta J; Wong RO; Fadool JM
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4762-71. PubMed ID: 16303977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.